Fluid Mechanics and Flight Mechanics

Development and verification of LES model in NNW-PHengLEI

  • Zipei ZHANG ,
  • Zhong ZHAO ,
  • Jianqiang CHEN ,
  • Jian LIU ,
  • Xiaobing DENG
Expand
  • 1.State Key Laboratory of Aerodynamics,Mianyang  621000,China
    2.Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: bell_cardc@163.com

Received date: 2022-03-18

  Revised date: 2022-05-02

  Accepted date: 2022-05-25

  Online published: 2022-06-17

Supported by

National Numerical Windtunnel Project

Abstract

An LES model is developed based on the open-source framework provided by the NNW-PHengLEI software. This model mainly includes a hybrid Fourier spectra/finite difference LES solver and a finite volume/finite difference LES solver. The projection method for incompressible flow solution, the hybrid Fourier spectra/finite difference method and subgrid-scale models are briefly introduced, and close/loose coupling architectures of the two solvers are described in detail. The incompressible channel flow, the flow past a circular cylinder at sub-critical Reynolds number and the natural low-frequency oscillations of flow around a NACA0012 are numerically simulated, and the results show that the two solvers have high numerical accuracies and complex-turbulence simulation capabilities. The PHengLEI-LES solver is equipped with common modules including high-order difference schemes, subgrid-scale models and turbulence-statistic methods, providing an open-source LES platform for turbulence simulation research.

Cite this article

Zipei ZHANG , Zhong ZHAO , Jianqiang CHEN , Jian LIU , Xiaobing DENG . Development and verification of LES model in NNW-PHengLEI[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 127171 -127171 . DOI: 10.7527/S1000-6893.2022.27171

References

1 SAGAUT P. Large eddy simulation for incompressible flows: An introduction[M]. 3rd ed. Berlin: Springer-Verlag, 2006
2 ROGALLO R S, MOIN P. Numerical simulation of turbulent flows[J]. Annual Review of Fluid Mechanics198416: 99-137.
3 CHOI H, MOIN P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited[J]. Physics of Fluids201224(1): 011702.
4 SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington D.C.: NASA, 2014.
5 TUCKER P G. The LES model’s role in jet noise[J]. Progress in Aerospace Sciences200844(6): 427-436.
6 PITSCH H. Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics200638: 453-482.
7 EDWARDS J R. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results[J]. Progress in Aerospace Sciences200844(6): 447-465.
8 ALMUTAIRI J H, ALQADI I M. Large-eddy simulation of natural low-frequency oscillations of separating-reattaching flow near stall conditions[J]. AIAA Journal201351(4): 981-991.
9 GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation: Current capabilities, recommended practices, and future research[J]. AIAA Journal201048(8): 1772-1784.
10 CHOI H, MOIN P. Effects of the computational time step on numerical solutions of turbulent flow[J]. Journal of Computational Physics1994113(1): 1-4.
11 NICOUD F, TODA H B, CABRIT O, et al. Using singular values to build a subgrid-scale model for large eddy simulations[J]. Physics of Fluids201123(8): 085106.
12 PIOMELLI U. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences200844(6): 437-446.
13 SCHUMANN U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics197518(4): 376-404.
14 BALARAS E, BENOCCI C, PIOMELLI U. Two-layer approximate boundary conditions for large-eddy simulations[J]. AIAA Journal199634(6): 1111-1119.
15 SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics200941: 181-202.
16 LUND T S, WU X H, SQUIRES K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics1998140(2): 233-258.
17 SAGAUT P, GARNIER E, TROMEUR E, et al. Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows[J]. AIAA Journal200442(3): 469-477.
18 JARRIN N, BENHAMADOUCHE S, LAURENCE D J, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat and Fluid Flow200627(4): 585-593.
19 FORSYTHE J, WENTZEL J F, SQUIRES K, et al. Computation of prescribed spin for a rectangular wing and for the F-15E using detached-eddy simulation[C]∥41st Aerospace Sciences Meeting and Exhibit 2003. Reston: AIAA, 2003: 839.
20 WANG Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids[J]. Progress in Aerospace Sciences200743(1-3): 1-41.
21 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报201942(11): 2368-2383.
  ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers201942(11): 2368-2383 (in Chinese).
22 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学2020(2): 210-219.
  ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science2020(2): 210-219 (in Chinese).
23 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学202151: 1326-1347.
  Chen J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Science China: Technological Sciences202151: 1326-1347 (in Chinese).
24 CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation196822(104): 745-762.
25 CHORIN A J. On the convergence of discrete approximations to the Navier-Stokes equations[J]. Mathematics of Computation196923(106): 341-353.
26 刘淼儿. 数值求解不可压缩流动的投影方法[D]. 北京: 清华大学, 2004: 26-29.
  LIU M E. Projection methods for numerically solving incompressible flow[D]. Beijing: Tsinghua University, 2004: 26-29 (in Chinese).
27 KIM J, MOIN P. Application of a fractional-step method to incompressible Navier-Stokes equations[J]. Journal of Computational Physics198559(2): 308-323.
28 CANUTO C, QUARTERONI A, HUSSAINI M Y, et al. Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
29 GAMET L, DUCROS F, NICOUD F, et al. Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows[J]. International Journal for Numerical Methods in Fluids199929(2): 159-191.
30 CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Fundamentals in single domains[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.
31 MARTíN M P, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics200013(5): 361-376.
32 陈坚强, 马燕凯, 闵耀兵, 等. 国家数值风洞(NNW)通用软件同构混合求解器设计[J]. 空气动力学学报202038(6): 1103-1110, 1102.
  CHEN J Q, MA Y K, MIN Y B, et al. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel(NNW)PHengLEI[J]. Acta Aerodynamica Sinica202038(6): 1103-1110, 1102 (in Chinese).
33 DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics2000165(1): 22-44.
34 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报202142(9): 625718.
  LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625718 (in Chinese).
35 SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review196391(3): 99-164.
36 YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. The Physics of Fluids198629(7): 2152-2164.
37 LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A: Fluid Dynamics19924(3): 633-635.
38 邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2008: 21-22.
  DENG X B. Large eddy simulation of incompressible turbulent flow[D]. Mianyang: China Aerodynamics Research and Development Center, 2008: 21-22 (in Chinese).
39 LU X Y, WANG S W, SUNG H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber[J]. Journal of Fluid Mechanics2005527: 171-195.
40 PEKUROVSKY D. P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions[J]. SIAM Journal on Scientific Computing201234(4): C192-C209.
41 孟丽媛, 徐刚, 万云博, 等. 风雷软件应用与开发指南2112.v9198)[M]. 绵阳: 中国空气动力研究与发展中心, 2021.
  MENG L Y, XU G, WAN Y B, et al. PHengLEI2112.v9198) user’s manual[M]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese).
42 KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics1987177: 133-166.
43 MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ =590[J]. Physics of Fluids199911(4): 943-945.
44 ONG L, WALLACE J. The velocity field of the turbulent very near wake of a circular cylinder[J].Experiments in Fluids199620(6): 441-453.
45 LOURENCO L M, SHIH C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study: TF-62[R]. Stanford, California: NASA Ames/Stanford University, 1994.
46 PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids200820(8): 085101.
47 WISSINK J G, RODI W. Numerical study of the near wake of a circular cylinder[J]. International Journal of Heat and Fluid Flow200829(4): 1060-1070.
48 LYSENKO D A, ERTESV?G I S, RIAN K E. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox[J]. Flow, Turbulence and Combustion201289(4): 491-518.
49 MA X, KARAMANOS G S, KARNIADAKIS G E. Dynamics and low-dimensionality of a turbulent near wake[J]. Journal of Fluid Mechanics2000410: 29-65.
50 ZAMAN K B M Q, MCKINZIE D J, RUMSEY C L. A natural low-frequency oscillation of the flow over an airfoil near stalling conditions[J]. Journal of Fluid Mechanics1989202: 403-442.
51 ELJACK E M, SORIA J. Investigation of the low-frequency oscillations in the flowfield about an airfoil[J]. AIAA Journal202058(10): 4271-4286.
52 LIU J, et al. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing[J]. Chinese Journal of Aeronautics201427(3): 521-530.
Outlines

/