ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Development and verification of LES model in NNW-PHengLEI
Received date: 2022-03-18
Revised date: 2022-05-02
Accepted date: 2022-05-25
Online published: 2022-06-17
Supported by
National Numerical Windtunnel Project
An LES model is developed based on the open-source framework provided by the NNW-PHengLEI software. This model mainly includes a hybrid Fourier spectra/finite difference LES solver and a finite volume/finite difference LES solver. The projection method for incompressible flow solution, the hybrid Fourier spectra/finite difference method and subgrid-scale models are briefly introduced, and close/loose coupling architectures of the two solvers are described in detail. The incompressible channel flow, the flow past a circular cylinder at sub-critical Reynolds number and the natural low-frequency oscillations of flow around a NACA0012 are numerically simulated, and the results show that the two solvers have high numerical accuracies and complex-turbulence simulation capabilities. The PHengLEI-LES solver is equipped with common modules including high-order difference schemes, subgrid-scale models and turbulence-statistic methods, providing an open-source LES platform for turbulence simulation research.
Zipei ZHANG , Zhong ZHAO , Jianqiang CHEN , Jian LIU , Xiaobing DENG . Development and verification of LES model in NNW-PHengLEI[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 127171 -127171 . DOI: 10.7527/S1000-6893.2022.27171
1 | SAGAUT P. Large eddy simulation for incompressible flows: An introduction[M]. 3rd ed. Berlin: Springer-Verlag, 2006 |
2 | ROGALLO R S, MOIN P. Numerical simulation of turbulent flows[J]. Annual Review of Fluid Mechanics, 1984, 16: 99-137. |
3 | CHOI H, MOIN P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited[J]. Physics of Fluids, 2012, 24(1): 011702. |
4 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington D.C.: NASA, 2014. |
5 | TUCKER P G. The LES model’s role in jet noise[J]. Progress in Aerospace Sciences, 2008, 44(6): 427-436. |
6 | PITSCH H. Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics, 2006, 38: 453-482. |
7 | EDWARDS J R. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44(6): 447-465. |
8 | ALMUTAIRI J H, ALQADI I M. Large-eddy simulation of natural low-frequency oscillations of separating-reattaching flow near stall conditions[J]. AIAA Journal, 2013, 51(4): 981-991. |
9 | GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation: Current capabilities, recommended practices, and future research[J]. AIAA Journal, 2010, 48(8): 1772-1784. |
10 | CHOI H, MOIN P. Effects of the computational time step on numerical solutions of turbulent flow[J]. Journal of Computational Physics, 1994, 113(1): 1-4. |
11 | NICOUD F, TODA H B, CABRIT O, et al. Using singular values to build a subgrid-scale model for large eddy simulations[J]. Physics of Fluids, 2011, 23(8): 085106. |
12 | PIOMELLI U. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences, 2008, 44(6): 437-446. |
13 | SCHUMANN U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics, 1975, 18(4): 376-404. |
14 | BALARAS E, BENOCCI C, PIOMELLI U. Two-layer approximate boundary conditions for large-eddy simulations[J]. AIAA Journal, 1996, 34(6): 1111-1119. |
15 | SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202. |
16 | LUND T S, WU X H, SQUIRES K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2): 233-258. |
17 | SAGAUT P, GARNIER E, TROMEUR E, et al. Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows[J]. AIAA Journal, 2004, 42(3): 469-477. |
18 | JARRIN N, BENHAMADOUCHE S, LAURENCE D J, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat and Fluid Flow, 2006, 27(4): 585-593. |
19 | FORSYTHE J, WENTZEL J F, SQUIRES K, et al. Computation of prescribed spin for a rectangular wing and for the F-15E using detached-eddy simulation[C]∥41st Aerospace Sciences Meeting and Exhibit 2003. Reston: AIAA, 2003: 839. |
20 | WANG Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids[J]. Progress in Aerospace Sciences, 2007, 43(1-3): 1-41. |
21 | 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. |
ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383 (in Chinese). | |
22 | 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020(2): 210-219. |
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020(2): 210-219 (in Chinese). | |
23 | 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51: 1326-1347. |
Chen J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Science China: Technological Sciences, 2021, 51: 1326-1347 (in Chinese). | |
24 | CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation, 1968, 22(104): 745-762. |
25 | CHORIN A J. On the convergence of discrete approximations to the Navier-Stokes equations[J]. Mathematics of Computation, 1969, 23(106): 341-353. |
26 | 刘淼儿. 数值求解不可压缩流动的投影方法[D]. 北京: 清华大学, 2004: 26-29. |
LIU M E. Projection methods for numerically solving incompressible flow[D]. Beijing: Tsinghua University, 2004: 26-29 (in Chinese). | |
27 | KIM J, MOIN P. Application of a fractional-step method to incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1985, 59(2): 308-323. |
28 | CANUTO C, QUARTERONI A, HUSSAINI M Y, et al. Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. |
29 | GAMET L, DUCROS F, NICOUD F, et al. Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows[J]. International Journal for Numerical Methods in Fluids, 1999, 29(2): 159-191. |
30 | CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Fundamentals in single domains[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. |
31 | MARTíN M P, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(5): 361-376. |
32 | 陈坚强, 马燕凯, 闵耀兵, 等. 国家数值风洞(NNW)通用软件同构混合求解器设计[J]. 空气动力学学报, 2020, 38(6): 1103-1110, 1102. |
CHEN J Q, MA Y K, MIN Y B, et al. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel(NNW)PHengLEI[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1103-1110, 1102 (in Chinese). | |
33 | DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44. |
34 | 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718. |
LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718 (in Chinese). | |
35 | SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. |
36 | YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. The Physics of Fluids, 1986, 29(7): 2152-2164. |
37 | LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633-635. |
38 | 邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2008: 21-22. |
DENG X B. Large eddy simulation of incompressible turbulent flow[D]. Mianyang: China Aerodynamics Research and Development Center, 2008: 21-22 (in Chinese). | |
39 | LU X Y, WANG S W, SUNG H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber[J]. Journal of Fluid Mechanics, 2005, 527: 171-195. |
40 | PEKUROVSKY D. P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions[J]. SIAM Journal on Scientific Computing, 2012, 34(4): C192-C209. |
41 | 孟丽媛, 徐刚, 万云博, 等. 风雷软件应用与开发指南(2112.v9198)[M]. 绵阳: 中国空气动力研究与发展中心, 2021. |
MENG L Y, XU G, WAN Y B, et al. PHengLEI(2112.v9198) user’s manual[M]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese). | |
42 | KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177: 133-166. |
43 | MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ =590[J]. Physics of Fluids, 1999, 11(4): 943-945. |
44 | ONG L, WALLACE J. The velocity field of the turbulent very near wake of a circular cylinder[J].Experiments in Fluids, 1996, 20(6): 441-453. |
45 | LOURENCO L M, SHIH C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study: TF-62[R]. Stanford, California: NASA Ames/Stanford University, 1994. |
46 | PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8): 085101. |
47 | WISSINK J G, RODI W. Numerical study of the near wake of a circular cylinder[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1060-1070. |
48 | LYSENKO D A, ERTESV?G I S, RIAN K E. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox[J]. Flow, Turbulence and Combustion, 2012, 89(4): 491-518. |
49 | MA X, KARAMANOS G S, KARNIADAKIS G E. Dynamics and low-dimensionality of a turbulent near wake[J]. Journal of Fluid Mechanics, 2000, 410: 29-65. |
50 | ZAMAN K B M Q, MCKINZIE D J, RUMSEY C L. A natural low-frequency oscillation of the flow over an airfoil near stalling conditions[J]. Journal of Fluid Mechanics, 1989, 202: 403-442. |
51 | ELJACK E M, SORIA J. Investigation of the low-frequency oscillations in the flowfield about an airfoil[J]. AIAA Journal, 2020, 58(10): 4271-4286. |
52 | LIU J, et al. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing[J]. Chinese Journal of Aeronautics, 2014, 27(3): 521-530. |
/
〈 |
|
〉 |