Articles

Estimation of space radiation background of Wolter‑I X‑ray pulsar detector

  • Jinsheng LIU ,
  • Bo WANG ,
  • Juan SONG ,
  • Wencong WANG ,
  • Jingjing LI ,
  • Zhenhua XU
Expand
  • Shandong Institute of Space Electronic Technology,Yantai  264670,China

Received date: 2021-11-02

  Revised date: 2021-11-23

  Accepted date: 2022-05-26

  Online published: 2022-06-17

Supported by

Major Basic Research Projects on Equipment(514010204-301-3)

Abstract

X-ray pulsar navigation has the characteristics of autonomy, anti-interference, security, etc. For the detection and recognition of X-rays pulsar signals, a new kind of Wolter-I X-ray pulsar detector is introduced. To evaluate the performance of the detector and improve its sensitivity, the Wolter-I X-ray pulsar detector is analyzed through Monte Carlo (MC) simulations. Firstly, based on the Space Environment Information System (SPENVIS), the distribution and spectrum of various particles in the space radiation environment are be obtained. Secondly, the physical model of the Wolter-I X-ray pulsar detector is built in GEANT4, and the response of the detector to the particles including electrons, protons and helium is shown. Finally, taking the shading film of the detector as an example, the optimization method of detector is illustrated. The space radiation background of the optimized Wolter-I X-ray pulsar detector in 700 km on earth circular orbit is acquired. The simulation results show that the space radiation background of the optimized detector is 30.68 cts·s-1.

Cite this article

Jinsheng LIU , Bo WANG , Juan SONG , Wencong WANG , Jingjing LI , Zhenhua XU . Estimation of space radiation background of Wolter‑I X‑ray pulsar detector[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526599 -526599 . DOI: 10.7527/S1000-6893.2022.26599

References

1 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 1-20.
  ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015: 1-20 (in Chinese).
2 信世军, 郑伟, 王奕迪. 脉冲星角位置对脉冲模板的影响及其削弱策略[J]. 北京航空航天大学学报201844(1): 169-175.
  XIN S J, ZHENG W, WANG Y D. Impact of pulsar angular position on pulse template and its compensation method[J]. Journal of Beijing University of Aeronautics and Astronautics201844(1): 169-175 (in Chinese).
3 梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报201537(10): 2356-2362.
  LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology201537(10): 2356-2362 (in Chinese).
4 李艳丽, 郑建华, 高东. 基于FPGA+DSP的X射线脉冲星导航原理样机的设计与实现[J]. 深空探测学报20185(3): 226-234.
  LI Y L, ZHENG J H, GAO D. Design and implementation of X-ray pulsar navigation prototype based on FPGA + DSP[J]. Journal of Deep Space Exploration20185(3): 226-234 (in Chinese).
5 黎月明, 邓楼楼, 杨健, 等. 电铸镍Wolter-I型光学系统制造技术发展综述[J]. 空间控制技术与应用202046(2): 8-15.
  LI Y M, DENG L L, YANG J, et al. Manufacturing technology and application development of electroformed nickel Wolter-I optical system[J]. Aerospace Control and Application202046(2): 8-15 (in Chinese).
6 ZUO F C, MEI Z W, MA T, et al. Design and development of grazing incidence X-ray mirrors[C]∥ SPIE Proceedings of the Photoelectronic Technology Committee Conferences. Bellingham: SPIE, 2016: 979610.
7 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报201738(5): 1-9.
  LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering201738(5): 1-9 (in Chinese).
8 李春芳. Wolter X射线成像系统设计及成像质量分析[D]. 大连:大连理工大学, 2007: 24-33.
  LI C F. Design and imaging quality analysis of Wolter X-ray imaging system[D]. Dalian: Dalian University of Technology, 2007: 24-33 (in Chinese).
9 MOLENDIS. The role of the background in past and future X-ray missions[J]. Experimental Astronomy201744(3): 263-271.
10 蒋文丽, 戚利强, 韩大炜, 等. 一种快速估算聚焦型空间X射线仪器粒子本底水平的方法及应用[J]. 物理学报202069(15): 150701.
  JIANG W L, QI L Q, HAN D W, et al. Method and application of fast estimating particle background level for space-based focusing X-ray instruments[J]. Acta PhysicaSinica202069(15): 150701 (in Chinese).
11 FIORETTI V, BULGARELLI A, MALAGUTI G, et al. The low Earth orbit radiation environment and its impact on the prompt background of hard X-ray focusing telescopes[C]∥Proceedings of SPIE Astronomical Telescopes + Instrumentation, High Energy, Optical, and Infrared Detectors for Astronomy V. Bellingham: SPIE, 2012: 833-848.
12 ZOGLAUER A, WEIDENSPOINTNER G, WUNDER-ER C B, et al. Status of instrumental background simulations for gamma-ray telescopes with Geant4[C]∥Nuclear Science Symposium Conference Record. New York: IEEE, 2008: 2859-2864.
13 VALENTINA F. Geant4 simulation of the HITOMI/SXS instrumental background[C]∥The 13th Geant4 Space Users’ Workshop, 2018: 7.
14 CLUCAS S. The space environment information system (SPENVIS)[EB/OL]. (2022-08-26) [2022-11-30]. .
15 刘建忠, 王勇, 姚小丽, 等. 空间辐射剂量测量简介[J]. 中国辐射卫生201019(4): 458-461.
  LIU J Z, WANG Y, YAO X L, et al. Brief introduction to space radiation dosimetry monitoring[J]. Chinese Journal of Radiological Health201019(4): 458-461 (in Chinese).
16 高欣, 杨生胜, 牛小乐, 等. 空间辐射环境与测量[J]. 真空与低温200713(1): 41-47.
  GAO X, YANG S S, NIU X L, et al. Space radiation environments and dosimetry[J]. Vacuum and Cryogenics200713(1): 41-47 (in Chinese).
17 CUCINOTTAF,SHAVERSM, SAGANTI P B, et al. Radiation protection studies of international space station extravehicular activity space suits: NASA/TP2003-212051[R]. Washington, D.C.: NASA, 2003.
18 路伟. Geant4的开发及其在空间辐射效应分析中的应用[D]. 长沙:国防科学技术大学, 2007: 6-15.
  LU W. Implementation of Geant4 and its applications to the analysis of space radiation effects[D]. Changsha: National University of Defense Technology, 2007: 6-15 (in Chinese).
19 李刚, 谢斐, 张娟, 等. 准直型空间X射线望远镜本底研究概述[J]. 天文学进展201533(2): 233-249.
  LI G, XIE F, ZHANG J, et al. Introduction to the background study for X-ray collimated telescope[J]. Progress in Astronomy201533(2): 233-249 (in Chinese).
20 VETTE J. The NASA/National Space Science Data Center trapped radiation environment model program, 1964—1991[R]. Washington, D.C.: NASA, 1991.
21 BADHWAR G D, O’NEILL P M. Galactic cosmic radiation model and its applications[J]. Advances in Space Research199617(2): 7-17.
22 NYMMIK R A, PANASYUK M I, PERVAJA T I, et al. Amodel of galactic cosmic ray fluxes[J]. International Journal of Radiation Applications and Instrumentation, Part D, Nuclear Tracks and Radiation Measurements199220(3): 427-429.
23 AGOSTINELLI S, ALLISON J, AMAKO K, et al. Geant4—A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment2003506(3): 250-303.
24 ALLISO J, AMAKO K, APOSTOLAKIS J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science200653(1): 270-278.
25 WRIHGT D H, MAIRE M. Geant4 physics reference manual[EB/OL]. (2012-11-30) [2022-06-21]. .
26 聂鹏煊, 汪一夫, 郑涛, 等. CsI(Tl)对高能质子能量响应的蒙特卡罗研究[J]. 武汉科技学院学报201023(2): 27-32.
  NIE P X, WANG Y F, ZHENG T, et al. Monte Carlo simulation of energy response of CsI(Tl) to high energy proton[J]. Journal of Wuhan University of Science and Engineering201023(2): 27-32 (in Chinese).
Outlines

/