Material Engineering and Mechanical Manufacturing

Statistics on geometric uncertainties of casting blades in low-pressure turbines

  • Jiaqi LUO ,
  • Zeshuai CHEN ,
  • Zhengping ZOU ,
  • Fei ZENG ,
  • Pengcheng DU
Expand
  • 1.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
    2.Research Institute of Aero-Engine,Beihang University,Beijing 102206,China
    3.National Key Laboratory of Science and Technology on Aero-Engine and Aero-Thermodynamics,Beihang University,Beijing 102206,China
    4.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China
E-mail: jiaqil@zju.edu.cn

Received date: 2022-03-28

  Revised date: 2022-04-21

  Accepted date: 2022-05-30

  Online published: 2022-06-08

Supported by

National Science and Technology Major Project(J2019-II-0012-0032);National Natural Science Foundation of China(51976183)

Abstract

It has been well known that there are different sources for geometric deviations of casting turbine blades. Statistical study of geometric deviations benefits not only the discovery of deviation sources and statistical modelling, but also the evaluation of blade geometric accuracy. This paper gives a statistical study of on geometric uncertainties of casting blades in low-pressure turbines. First, the geometric deviations of one thousand casting blades in the low-pressure turbine are preliminary studied. By principal component analysis, the basic modes of geometric deviations are extracted, and the main sources are distinguished, including movement error, twist error and profile error. Then, an error decomposition method based on the optimization strategy is introduced, which can be used to extract different kinds of errors. Statistical study finds that the Probability Density Functions (PDFs) of global geometric deviations are close to Gauss distributions. Finally, blade profile deviations are statistically analyzed. The results demonstrate that in comparison with the original casting blades, the geometric dispersion degree and the profile tolerance error of the corrected blades without global geometric deviations are significantly decreased, and the percentage of qualified blades is significantly increased. Besides, statistical study on profile tolerance at some specified positions on the blade demonstrates that the probability density functions of profile tolerance are also close to Gauss distributions.

Cite this article

Jiaqi LUO , Zeshuai CHEN , Zhengping ZOU , Fei ZENG , Pengcheng DU . Statistics on geometric uncertainties of casting blades in low-pressure turbines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 427203 -427203 . DOI: 10.7527/S1000-6893.2022.27203

References

1 BAMMERT K, SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power197698(1): 29-36.
2 ROELKE R J, HAAS J E. The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine[J]. Journal of Engineering for Power1983105(2): 377-382.
3 GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery2003125(4): 692-703.
4 SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery2014136(9): 091005.
5 SCHROEDER R P, THOLE K A. Effect of in-hole roughness on film cooling from a shaped hole[J]. Journal of Turbomachinery2017139(3): 031004.
6 LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power2012134(11): 112601.
7 XIONG J T, YANG J, MCBEAN I, et al. Statistical evaluation of the performance impact of manufacturing variations for steam turbines[C]∥ Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: 56553.
8 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报201738(3): 490-497.
  CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics201738(3): 490-497 (in Chinese).
9 MA C, GAO L M, WANG H B, et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics202134(6): 220-232.
10 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报202142(2): 423796.
  LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica202142(2): 423796 (in Chinese).
11 DOW E A, WANG Q Q. The implications of tolerance optimization on compressor blade design[J]. Journal of Turbomachinery2015137(10): 101008.
12 颜勇, 祝培源, 宋立明, 等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术201738(8): 1767-1775.
  YAN Y, ZHU P Y, SONG L M, et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology201738(8): 1767-1775 (in Chinese).
13 LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology201877: 471-484.
14 NILSSON P. A study on the impact of blade tolerances on turbine performance[D]. Goteborg: Chalmers University on Technology, 2016.
15 WANG X J, ZOU Z P. Uncertainty analysis of impact of geometric variations on turbine blade performance[J]. Energy2019176: 67-80.
16 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报201031(11): 2130-2138.
  ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica201031(11): 2130-2138 (in Chinese).
17 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报201031(11): 1830-1834.
  ZHANG W H, ZOU Z P, LIU H X, et al. Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics201031(11): 1830-1834 (in Chinese).
18 TAO Z, GUO Z D, SONG L M, et al. Uncertainty quantification of aero-thermal performance of a blade endwall considering slot geometry deviation and mainstream fluctuation[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021: 111013.
19 XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method[J]. Aerospace Science and Technology201990: 127-139.
20 刘艳. 叶片制造技术[M]. 北京: 科学出版社, 2002: 385-409.
  LIU Y. Blade manufacturing technology[M]. Beijing: Science Press, 2002: 385-409 (in Chinese).
21 中国航空工业总公司六二四所. 叶片叶型的标注、公差与叶身表面粗糙度: [S]. 北京: 中国航空工业总公司, 1999.
  CGTE. Blade labeling, tolerance and surface roughness: [S]. Beijing: Aviation Industry Corporation of China, 1999 (in Chinese).
22 樊振中, 徐秀利, 王玉灵, 等. 熔模精密铸造技术在航空工业的应用及发展[J]. 特种铸造及有色合金201434(3): 285-289.
  FAN Z Z, XU X L, WANG Y L, et al. Investment casting technology application and development in the aviation industry[J]. Special Casting & Nonferrous Alloys201434(3): 285-289 (in Chinese).
23 蒋睿嵩, 汪文虎, 王增强, 等. 航空发动机涡轮叶片精密成形技术及其发展趋势[J]. 航空制造技术201659(21): 57-62.
  JIANG R S, WANG W H, WANG Z Q, et al. Precision forming technology and its development trend of aeroengine turbine blade[J]. Aeronautical Manufacturing Technology201659(21): 57-62 (in Chinese).
24 黄智, 李凯, 赵燎, 等. 航空发动机叶片型面轮廓光学测量技术现状及发展趋势[J]. 航空制造技术201861(22): 28-35.
  HUANG Z, LI K, ZHAO L, et al. Current technique and development trend of optical measurement of aero-engine blade profile[J]. Aeronautical Manufacturing Technology201861(22): 28-35 (in Chinese).
25 赵圆圆, 曾飞, 李洋, 等. 基于光场成像的快照式气膜孔三维测量技术[J]. 航空学报202142(10): 524158.
  ZHAO Y Y, ZENG F, LI Y, et al. A light-field imaging based film cooling hole 3D measurement technique[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524158 (in Chinese).
26 蔺小军, 刘相柱, 郭研, 等. 基于CMM测量的航空发动机叶片型面误差分离技术[J]. 计量学报201435(1): 18-24.
  LIN X J, LIU X Z, GUO Y, et al. Error separation techniques for aero-engine blade surface based on the measurement of CMM[J]. Acta Metrologica Sinica201435(1): 18-24 (in Chinese).
27 张明德, 罗冲, 张卫青, 等. 航发叶片的测量数据误差处理方法研究[J]. 组合机床与自动化加工技术2017(1): 57-61.
  ZHANG M D, LUO C, ZHANG W Q, et al. Research on processing method of measuring data error of precision forging aeroengine blade[J]. Modular Machine Tool & Automatic Manufacturing Technique2017(1): 57-61 (in Chinese).
28 DUNN F, PARBERRY I. 3D math primer for graphics and game development[M]. Plano: Wordware Publishing, Inc., 2002.
29 段志勇, 袁信. 基于四元数方法的GPS航姿解算[J]. 南京航空航天大学学报199931(5): 492-496.
  DUAN Z Y, YUAN X. GPS based attitude determination based on quaternion algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics199931(5): 492-496 (in Chinese).
30 陈万春, 肖业伦, 赵丽红, 等. 四元数的核心矩阵及其在航天器姿态控制中的应用[J]. 航空学报200021(5): 389-392.
  CHEN W C, XIAO Y L, ZHAO L H, et al. Kernel matrix of quaternion and its application in spacecraft attitude control[J]. Acta Aeronautica et Astronautica Sinica200021(5): 389-392 (in Chinese).
31 崔培林, 周翟和, 吕品, 等. 自适应误差四元数无迹卡尔曼滤波四旋翼飞行器姿态解算方法[J]. 西安交通大学学报201953(3): 97-102, 110.
  CUI P L, ZHOU Z H, Lü P, et al. Adaptive error quaternion unscented Kalman filter algorithm for quadrotor attitude calculation[J]. Journal of Xi’an Jiaotong University201953(3): 97-102, 110 (in Chinese).
Outlines

/