Reviews

Uncertainty⁃based design system for aeroengines

  • Xinqian ZHENG ,
  • Junying WANG ,
  • Weina HUANG ,
  • Yu FU ,
  • Ronghui CHENG ,
  • Hongyang XIONG
Expand
  • 1.Institute for Aero Engine,Tsinghua University,Beijing  100084,China
    2.School of Vehicle and Mobility,Tsinghua University,Beijing  100084,China
    3.AECC Sichuan Gas Turbine Establishment,Chengdu  610500,China
    4.AECC Guiyang Engine Design Research Institute,Guiyang  550081,China
    5.AECC Shenyang Engine Research Institute,Shenyang  110015,China
    6.Department of Air Force Equipment,Beijing  100843,China
E-mail: wang_jy17@163.com

Received date: 2022-03-02

  Revised date: 2022-03-16

  Accepted date: 2022-05-26

  Online published: 2022-06-08

Supported by

National Science and Technology Major Project(2017-II-0004-0016)

Abstract

A significant number of random and epistemic uncertainties exist in the whole life cycle of an aeroengine, causing problems such as a long design iteration cycle, low manufacturing qualification rate, and difficulties in maintenance. Recent years have witnessed a series of research on uncertainty analysis at home and abroad; however, the uncertainty design system of aeroengines has not been proposed systematically at the theoretical level. Based on the current deterministic design system and the results of uncertainty research, this paper discusses the construction of the uncertainty-based design system and realization of the design system reform for aeroengines. The uncertainty factors and their influence on aeroengines are first summarized, followed by discussion of the definition and necessity of the uncertainty-based design system. The ultimate goal of the uncertainty-based design system is to achieve successful research and development with a single iteration. The performance distribution is quantitatively evaluated and controlled at each design stage to produce a comprehensive optimal design scheme in terms of performance, reliability, robustness, and costs in the whole life cycle. Based on this definition, the basic elements of the uncertainty-based design system are analyzed, including the process, method, platform, specification, and organization. Finally, the periodic prospects, expected benefits, and challenges of the uncertainty-based design system are presented.

Cite this article

Xinqian ZHENG , Junying WANG , Weina HUANG , Yu FU , Ronghui CHENG , Hongyang XIONG . Uncertainty⁃based design system for aeroengines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 27099 -027099 . DOI: 10.7527/S1000-6893.2022.27099

References

1 BALLAL D R, ZELINA J. Progress in aeroengine technology (1939-2003)[J]. Journal of Aircraft200441(1): 43-50.
2 WANG J Y, ZHENG X Q. Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power2020142(7): 070801.
3 ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicle: NASA TM 2002-211462[R]. Hampton: NASA Langley Research Center, 2002.
4 ALONSO J J, ELDRED M S, CONSTANTINE P, et al. Scalable environment for quantification of uncertainty and optimization in industrial applications (SEQUOIA)[C]∥ 19th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2017.
5 HIRSCH C, WUNSCH D, SZUMBARSKI J, et al. Uncertainty management for robust industrial design in aeronautics[M]. Cham: Springer, 2019:1-50.
6 KARL A, MAY G, BARCOCK C, et al. Robust design: methods and application to real world examples[C]∥ Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2008: 145-151.
7 BUNKER R S. The effects of manufacturing tolerances on gas turbine cooling[J]. Journal of Turbomachinery2009131(4): 041018.
8 ZHANG J Y, TANG H L, CHEN M. Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine) [J]. Applied Energy2019249: 87-108.
9 ZHANG J Y, TANG H L, CHEN M. Robust design methodologies to the adaptive cycle engine system performance: Preliminary analysis[J]. Energy Procedia2019158: 1521-1529.
10 WANG J Y, HE X, WANG B T, et al. Shapley additive explanations of multigeometrical variable coupling effect in transonic compressor[J]. Journal of Engineering for Gas Turbines and Power2022144(4): 041015.
11 LUO J Q, XIA Z H, LIU F. Robust design optimization considering inlet flow angle variations of a turbine cascade[J]. Aerospace Science and Technology2021116: 106893.
12 TAN Y Q, ZANG C P, PETROV E P. Mistuning sensitivity and optimization for bladed disks using high-fidelity models[J]. Mechanical Systems and Signal Processing2019124: 502-523.
13 许本胜, 臧朝平, 缪辉, 等. 结构动力鲁棒优化设计方法综述[J]. 工程力学201936(4): 24-36.
  XU B S, ZANG C P, MIAO H, et al. Robust optimization design methods of structural dynamics: a review[J]. Engineering Mechanics201936(4): 24-36 (in Chinese).
14 KLIR G J, FOLGER T A. Fuzzy sets, uncertainty and information[M]. Upper Saddle River: Prentice Hall, 1987: 1-50.
15 KNIGHT F H. Risk, uncertainty and profit[M]. Boston: Houghton Mifflin Company, 1921:1-50.
16 LI D Y, DU Y. Artificial intelligence with uncertainty[M]. 2nd ed. Boca Raton: CRC Press, 2017:1-50.
17 WALTERS R W, HUYSE L. Uncertainty analysis for fluid mechanics with applications: NASA/CR-2002-211449 [R]. Hampton: NASA Langley Research Center, 2002.
18 ABERNETHY R B, BENEDICT R P, DOWDELL R B. ASME measurement uncertainty[J]. Journal of Fluids Engineering1985107(2): 161-164.
19 YAO W, CHEN X Q, LUO W C, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences201147(6): 450-479.
20 陈小前, 姚雯, 欧阳琦. 飞行器不确定性多学科设计优化理论与应用[M]. 北京: 科学出版社, 2013: 39-157.
  CHEN X Q, YAO W, OUYANG Q. Theory and application of uncertainty-based multidisciplinary design optimization for flight vehicles[M]. Beijing: Science Press, 2013: 39-157 (in Chinese).
21 AIAA. Guide for the verification and validation of computational fluid dynamics simulations: AIAA G-077-1998 (R2002) [S]. Reston: AIAA, 1998.
22 MONTOMOLI F, CARNEVALE M, D'AMMARO A, et al. Uncertainty quantification in computational fluid dynamics and aircraft engines[M]. Cham: Springer, 2019:1-66.
23 MEHER-HOMJI C B, CHAKER M A, MOTIWALA H M. Gas turbine performance deterioration[C]//Proceedings of the 30th Turbomachinery Symposium. College Station: Turbomachinery Laboratories, Texas A&M University, 2001.
24 SALLEE G. Performance deterioration based on existing (historical) data: NASA-CR-135448[R]. Cleveland: NASA Lewis Research Center, 1978.
25 SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery2014136(9): 091005.
26 ZHENG X Q, YANG H L. Influence of tip clearance on the performance and matching of multistage axial compressors: GT2016-56232[R]. New York: ASME, 2016.
27 DENTON J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery1993115(4): 621-656.
28 VO H D. Role of tip clearance flow on axial compressor stability[D]. Cambridge: Massachusetts Institute of Technology, 2001.
29 GHENAIET A, TAN S C, ELDER R L. Prediction of an axial turbomachine performance degradation due to sand ingestion[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2005219(4): 273-287.
30 HERGT A, KLINNER J, STEINERT W, et al. The effect of an eroded leading edge on the aerodynamic performance of a transonic fan blade cascade[J]. Journal of Turbomachinery2015137(2): 021006.
31 ZAMBONI G, XU L P. Fan root aerodynamics for large bypass gas turbine engines: Influence on the engine performance and 3D design[J]. Journal of Turbomachinery2012134(6): 061017.
32 李其汉, 王延荣. 航空发动机结构强度设计问题[M]. 上海: 上海交通大学出版社, 2014: 401-430.
  LI Q H, WANG Y R. The design problem of aero-engine structure strength[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 401-430 (in Chinese).
33 BONS J P. A review of surface roughness effects in gas turbines[J]. Journal of Turbomachinery2010132(2): 021004.
34 DEBRUGE L L. The aerodynamic significance of fillet geometry in turbocompressor blade rows[J]. Journal of Engineering for Power1980102(4): 984-993.
35 MARSON E. Effect of manufacturing deviations on performance of axial flow compressor blading: 92-GT-326[R]. New Yrok: ASME, 1992.
36 ROBERTS W B. Axial compressor performance restoration by blade profile control: 84-GT-232 [R]. New York: ASME, 1984.
37 HAMED A, TABAKOFF W C, WENGLARZ R V. Erosion and deposition in turbomachinery[J]. Journal of Propulsion and Power200622(2): 350-360.
38 CASARI N, PINELLI M, SUMAN A, et al. EBFOG: Deposition, erosion, and detachment on high-pressure turbine vanes[J]. Journal of Turbomachinery2018140(6): 061001.
39 MONTOMOLI F, MASSINI M, SALVADORI S. Geometrical uncertainty in turbomachinery: Tip gap and fillet radius[J]. Computers & Fluids201146(1): 362-368.
40 BOYNTON J L, TABIBZADEH R, HUDSON S T. Investigation of rotor blade roughness effects on turbine performance[J]. Journal of Turbomachinery1993115(3): 614-620.
41 JOVANOVI? M B, DE LANGE H C, VAN STEENHOVEN A A. Effect of hole imperfection on adiabatic film cooling effectiveness[J]. International Journal of Heat and Fluid Flow200829(2): 377-386.
42 SCHROEDER R P, THOLE K A. Effect of in-hole roughness on film cooling from a shaped hole[J]. Journal of Turbomachinery2017139(3): 031004.
43 BOGARD D G, THOLE K A. Gas turbine film cooling[J]. Journal of Propulsion and Power200622(2): 249-270.
44 STIMPSON C K, SNYDER J C, THOLE K A, et al. Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels[J]. Journal of Turbomachinery2017139(2): 021003.
45 WHITEHEAD D S. Effect of mistuning on the vibration of turbo-machine blades induced by wakes[J]. Journal of Mechanical Engineering Science19668(1): 15-21.
46 GAMANNOSSI A, AMERINI A, POGGIALI M, et al. Uncertainty quantification of an aeronautical combustor using a 1-D approach[J]. AIP Conference Proceedings20192191(1): 020083.
47 RUDEY R A, ANTL R J. The Effect of inlet tempera-ture distortion on the performance of a turbo-fan en-gine compressor system[C]∥ 6th Propulsion Joint Specialist Conference. Reston: AIAA, 1970.
48 HAH C, RABE D C, SULLIVAN T J, et al. Effects of inlet distortion on the flow field in a transonic compressor rotor[J]. Journal of Turbomachinery1998120(2): 233-246.
49 BOWDITCH D, COLTRIN R. A survey of inlet/engine distortion compatibility[C]// 19th Joint Propulsion Conference. Reston: AIAA, 1983.
50 BEARD P F, SMITH A, POVEY T. Impact of severe temperature distortion on turbine efficiency[J]. Journal of Turbomachinery2013135(1): 011018.
51 MEHENDALE A B, EKKAD S V, HAN J C. Mainstream turbulence effect on film effectiveness and heat transfer coefficient of a gas turbine blade with air and CO2 film injection[J]. International Journal of Heat and Mass Transfer199437(17): 2707-2714.
52 WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design: GT2015-43399 [R]. New York: ASME, 2015.
53 CHU J, LUCKRING J. Experimental surface pressure data obtained on 65 deg delta wing across Reynolds number and Mach number ranges: NASA-TM-4645[R]. Hampton: NASA Langley Research Center, 1996.
54 刘永泉, 梁彩云, 施磊, 等. 航空燃气轮机总体设计[M]. 北京: 科学出版社, 2021: 22-30.
  LIU Y Q, LIANG C Y, SHI L, et al. Overall design of aircraft gas turbine engines [M]. Beijing: Science Press, 2021: 22-30 (in Chinese).
55 SMITH C F, LAPP B, GLAVICIC M. Uncertainty quantification of material mechanical properties using surrogate models[C]∥ 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016.
56 程荣辉. 轴流压气机设计技术的发展[J]. 燃气涡轮试验与研究200417(2): 1-8.
  CHENG R H. Development of design technology for axial compressor[J]. Gas Turbine Experiment and Research200417(2): 1-8 (in Chinese).
57 KOCH C C, SMITH L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power197698(3): 411-424.
58 ?ETIN M, UECER A S, HIRSCH C. Application of modified loss and deviation correlations to transonic axial compressors: AGARD R-745[R]. Paris: AGARD, 1987.
59 WEI N. Significance of loss models in aerothermodynamic simulation for axial turbines[D]. Stockholm: Royal Institute of Technology, 2000.
60 POTI N D, RABE D C. Verification of compressor data accuracy by uncertainty analysis and testing methods[J]. Journal of Turbomachinery1988110(2): 265-269.
61 AUTE V, MARTIN C. A comprehensive evaluation of regression uncertainty and the effect of sample size on the AHRI-540 method of compressor performance representation[C]∥Proceedings of the Twenty-Third International Compressor Engineering Conference at Purdue, 2016:1-9.
62 STILES R J. An example of uncertainty analysis in compressor testing: USAFA-TR-83-2[R]. Colorado Springs: Air Force Academy, 1983.
63 REAGAN M T, NAJM H N, GHANEM R G, et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection[J]. Combustion and Flame2003132(3): 545-555.
64 DENTON J D. Some limitations of turbomachinery CFD: GT2010-22540[R]. New York: ASME, 2010.
65 王永明, 卫刚, 兰发祥, 等. 航空发动机设计体系的建设与发展[J]. 燃气涡轮试验与研究200720(3): 1-7.
  WANG Y M, WEI G, LAN F X, et al. Constructing and developing of aeroengine design system[J]. Gas Turbine Experiment and Research200720(3): 1-7 (in Chinese).
66 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报202041(10): 123826.
  LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica202041(10): 123826.
67 GABREL V, MURAT C, THIELE A. Recent advances in robust optimization: An overview[J]. European Journal of Operational Research2014235(3):471-483.
68 ZHU D, ZHOU J, LIU C, et al. A short review of reliability-based design optimization[J]. IOP Conference Series: Materials Science and Engineering20211043(3):032041.
69 刘永泉, 黎旭, 任文成, 等. 数字孪生助力航空发动机跨越发展[J]. 航空动力2021(2):24-29.
  LIU Y Q, LI X, REN W C, et al. Digital twin boosting leap-forward development of aero engine[J]. Aerospace Power2021(2): 24-29 (in Chinese).
Outlines

/