Articles

Focusing optics for intensity-correlated measurement of pulsar angular position

  • Fuchang ZUO ,
  • Zhiwu MEI ,
  • Loulou DENG ,
  • Hao ZHOU ,
  • Xiaomin BEI ,
  • Yueming LI
Expand
  • 1.Beijing Institute of Control Engineering,Beijing 100190,China
    2.Qian Xuesen Laboratory of Space Technology,China Academy of Space Technology,Beijing 100194,China
E-mail: zfch-2004@163.com

Received date: 2022-03-08

  Revised date: 2022-04-02

  Accepted date: 2022-05-06

  Online published: 2022-05-19

Supported by

National Key R&D Program of China(2017YFB0503300)

Abstract

Pulsar navigation provides a possible approach for deep space exploration and navigation in the future. To establish high-precision space-time datum system and improve pulsar navigation accuracy, the X-ray intensity correlation method can be adopted to realize high-precision measurement of the pulsar angular position. As the critical component of pulsar measurement and exploration instruments, the X-ray optics concentrates the weak X-ray signal from the pulsar through high-efficiency and high-resolution focusing, thus increasing the sensitivity of the instrument. Firstly, according to the ground experiment requirements of intensity-correlated measurement of pulsar angular position, the optical design of the multi-layer nested X-ray focusing optics was carried out. The effects of design parameters on the effective area and angular resolution were obtained, and the geometric parameters and reflection surface material of the mirrors were determined. Secondly, the overall manufacturing error standard for the focusing optics was determined, and the high-, low- and mid-frequency errors were allocated. Subsequently, ultra-smooth mandrels and mirrors were fabricated with the electroforming nickel replication process. The roughness and figure error of mandrels were tested, and the reflectivity of mirrors was measured with Beijing Synchrotron Radiation Facility. Finally, an in-situ alignment setup was built to precisely assemble and align the multi-layer nested mirrors to increase the effective area. The angular resolution of the focusing optics was measured to be 12.16". The intensity-correlated measurement experiment shows that the focusing optics significantly increases the number of photons received by the detector, thus satisfying the requirements for intensity-correlated measurement of pulsar angular position.

Cite this article

Fuchang ZUO , Zhiwu MEI , Loulou DENG , Hao ZHOU , Xiaomin BEI , Yueming LI . Focusing optics for intensity-correlated measurement of pulsar angular position[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 527124 -527124 . DOI: 10.7527/S1000-6893.2022.27124

References

1 杨善初, 喻虹, 陆荣华, 等. X射线强度关联干涉测量能谱展宽校正[J]. 光学学报201939(10): 395-402.
  YANG S C, YU H, LU R H, et al. Energy spectrum broadening correction in X-ray interferometry via intensity correlation[J]. Acta Optica Sinica201939(10): 395-402 (in Chinese).
2 ZHANG A X, HE Y H, WU L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica20185(4): 374.
3 韦震, 陆荣华, 喻虹, 等. 基于符合计数的极弱光强度关联干涉测量研究[J]. 光学学报202040(1): 211-218.
  WEI Z, LU R H, YU H, et al. Research on intensity-correlated interferometry with ultra-weak light based on coincidence counting[J]. Acta Optica Sinica202040(1): 211-218 (in Chinese).
4 HAN S S, YU H, SHEN X, et al. A review of ghost imaging via sparsity constraints[J]. Applied Sciences20188(8): 1379.
5 BROWN R H, TWISS R Q. Interferometry of the intensity fluctuations in light-I. Basic theory: The correlation between photons in coherent beams of radiation[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences1957242(1230): 300-324.
6 HANBURY BROWN R, TWISS R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature1956178(4541): 1046-1048.
7 DENG Z L, GAO Z F, LI X D, et al. On the formation of PSR J1640+2224: A neutron star born massive? [J]. The Astrophysical Journal Letters2020892(1): 4.
8 DENG Z L, LI X D, GAO Z F, et al. Evolution of LMXBs under different magnetic braking prescriptions[J]. The Astrophysical Journal Letters2021909(2): 174.
9 WANG H, GAO Z F, JIA H Y, et al. Estimation of electrical conductivity and magnetization parameter of neutron star crusts and applied to the high-braking-index pulsar PSR J1640-4631[J]. Universe20206(5): 63.
10 GAO Z F, SHAN H, WANG W, et al. Reinvestigation of the electron fraction and electron Fermi energy of neutron star[J]. Astronomische Nachrichten2017338(9-10): 1066-1072.
11 GAO Z F, WANG N, YUAN J P, et al. Evolution of superhigh magnetic fields of magnetars[J]. Astrophysics and Space Science2011333(2): 427-435.
12 YAN F Z, GAO Z F, YANG W S, et al. Explaining high braking indices of magnetars SGR 0501+4516 and 1E 2259+586 using the double magnetic-dipole model[J]. Astronomische Nachrichten2021342(1-2): 249-254.
13 韩春杨, 徐振邦, 吴清文, 等. 大型光学载荷次镜调整机构优化设计及误差分配[J]. 光学 精密工程201624(5): 1093-1103.
  HAN C Y, XU Z B, WU Q W, et al. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Optics and Precision Engineering201624(5): 1093-1103 (in Chinese).
14 THOME K, GUBBELS T, BARNES R. Preliminary error budget for the reflected solar instrument for the Climate Absolute Radiance and Refractivity Observatory[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 8153Earth Observing Systems XVI, 2011: 281-289.
15 GORENSTEIN P. Focusing X-ray optics for astronomy[J]. X-Ray Optics and Instrumentation20102010: 109740.
16 李海亮, 史丽娜, 牛洁斌, 等. 大高宽比硬X射线波带片制作及聚焦测试[J]. 光学 精密工程201725(11): 2803-2809.
  LI H L, SHI L N, NIU J B, et al. Fabrication and focusing test of hard X-ray zone plates with high aspect ratio[J]. Optics and Precision Engineering201725(11): 2803-2809 (in Chinese).
17 GIACCONI R. History of X-ray telescopes and astronomy[J]. Experimental Astronomy200925(1-3): 143-156.
18 AWAKI H, OGASAKA Y, KUNIEDA H, et al. Current status of the Astro-H X-ray Telescope system[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 7437Optics for EUV, X-Ray, and Gamma-Ray Astronomy IV, 2009: 28-35.
19 FRIEDRICH P, BR?UNINGER H, BUDAU B,et al. Development and testing of the eROSITA mirror modules[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 8443Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 2012: 508-515.
20 BAUMGARTNER W H, RAMSEY B, THOMAS N, et al. Ground calibration of the IXPE optics and telescope[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11821UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 2021: 118210N.
21 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016: 43-92.
  ZHAO D C. Design and fabrication technology on soft X-ray grazing incidence concentrators[D]. Changchun: Institute of Physics, Chinese Academy of Sciences, 2016: 43-92 (in Chinese).
22 SHEN Z X, YU J, MA B, et al. Current progress of X-ray multilayer telescope optics based on thermally slumping glass for eXTP mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 269-280.
23 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报201968(16): 158-163.
  QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica201968(16): 158-163 (in Chinese).
24 孔繁星. 超精密芯轴制造及Wolter-Ⅰ型极紫外光学收集镜复制工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 50-88.
  KONG F X. Replication process research on ultra-precision mandrel manufacturing wolter-Ⅰ extreme ultraviolet collector optics[D]. Harbin: Harbin Institute of Technology, 2018: 50-88 (in Chinese).
25 ZUO F C, MEI Z W, MA T, et al. Design and development of grazing incidence X-ray mirrors[C]∥ Proc SPIE 9796, Selected Papers of the Photoelectronic Technology Committee Conferences Held November, 2015: 442-447.
26 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报202069(3): 030702.
  ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica202069(3): 030702 (in Chinese).
27 WEISSKOPF M C. Design of grazing-incidence X-ray telescopes. 1[J]. Applied Optics197312(7): 1436-1439.
28 VERNANI D. advanced manufacturing techniques for X-ray and VHE Gamma-ray astronomical mirrors[D]. Varese: University of Insubria, 2011: 30-68.
29 ZUO F C, LI L S, MEI Z W, et al. Precision polishing of the mandrel for X-ray grazing incidence mirrors[J]. The International Journal of Advanced Manufacturing Technology2022118(1-2): 43-53.
Outlines

/