ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental studies on cavitating flow for liquid rocket engine cryogenic turbopump: Review
Received date: 2022-03-10
Revised date: 2022-03-30
Accepted date: 2022-04-20
Online published: 2022-05-09
Supported by
National Basic Research Program of China(613321)
Turbopump, which can be called the heart of engines, is a critical component of the cryogenic Liquid Rocket Engine (LRE). The improvement of its performance is limited by cavitation conditions. Due to cavitation thermodynamic effect of cryogenic fluids, the cryogenic cavitation is far more complicated than room-temperature water cavitation. The theoretical basis and key design points of cryogenic turbopump cavitation experimental systems are introduced, and the state-of-the-art similarity criterion for the cavitation thermal effect is revealed. Then several typical cryogenic LTR turbopump cavitating flow experimental systems and investigation results are introduced in detail, it is found that the application of thermal sensitive fluids as the substitution cryogen is technology development tendency, but it is important to keep the thermal effect similarity; Developed test technologies such as optics technique and wireless data transform have been introduced into cavitating flow analysis, they are worth to develop further. At last, the theoretical modeling of the cavitation thermal effect is concluded, it is found that most published works focus on the steady cavitation performance, the theoretical modeling of unsteady cavitation characteristics have been rarely reported. This paper may provide reference for further promoting the performance and reliability of the pump-pressurizing cryogenic liquid rocket engine.
Le XIANG , Kaifu XU , Hui CHEN , Suibo LI , Kai ZHANG , Shixin LIU . Experimental studies on cavitating flow for liquid rocket engine cryogenic turbopump: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 27131 -027131 . DOI: 10.7527/S1000-6893.2022.27131
1 | 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308. |
TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308 (in Chinese). | |
2 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
3 | 杨宝锋, 贾少锋, 李斌, 等. 大偏心及大扰动下涡轮泵密封转子动力特性[J]. 火箭推进, 2019, 45(6): 1-9. |
YANG B F, JIA S F, LI B, et al. Investigation on rotordynamic characteristics of a turbopump seal under large eccentricities and disturbances[J]. Journal of Rocket Propulsion, 2019, 45(6): 1-9 (in Chinese). | |
4 | 汪广旭, 谭永华, 陈建华, 等. 考虑喷注流强分布的纵向稳定性建模与分析[J]. 航空学报, 2021, 42(6): 124510. |
WANG G X, TAN Y H, CHEN J H, et al. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124510 (in Chinese). | |
5 | ZHANG W D, LIU C, WANG W. Innovation and outlook of the new generation of cryogenic and quick-launch launch vehicle[J]. Aerospace China, 2017, 18(2): 3-12. |
6 | YANG B F, LI B, CHEN H, et al. Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump[J]. Journal of Fluids Engineering, 2019, 141(7): 071109. |
7 | WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8): 48-57. |
8 | 李惠敏, 李向阳, 蒋建园, 等. 诱导轮出口参数对高速离心泵性能的影响[J]. 火箭推进, 2020, 46(1): 69-75. |
LI H M, LI X Y, JIANG J Y, et al. Influence of outlet parameters of inducer on performance of high speed centrifugal pump[J]. Journal of Rocket Propulsion, 2020, 46(1): 69-75 (in Chinese). | |
9 | 项乐, 陈晖, 谭永华, 等. 诱导轮空化流动特性实验研究[J]. 农业机械学报, 2019, 50(12): 125-132. |
XIANG L, CHEN H, TAN Y H, et al. Experiment of cavitating flow characteristics of inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 125-132 (in Chinese). | |
10 | 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864. |
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864 (in Chinese). | |
11 | 陈晖, 李斌, 张恩昭, 等. 液体火箭发动机高转速诱导轮旋转空化[J]. 推进技术, 2009, 30(4): 390-395. |
CHEN H, LI B, ZHANG E Z, et al. Rotating cavitation of the high-speed rotational inducer of LPRE[J]. Journal of Propulsion Technology, 2009, 30(4): 390-395 (in Chinese). | |
12 | CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76. |
13 | CHEN T R, CHEN H, LIANG W D, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, 132: 618-630. |
14 | 项乐, 谭永华, 陈晖, 等. 基于对流换热的低温空化流动数值模拟研究[J]. 推进技术, 2019, 40(6): 1314-1323. |
XIANG L, TAN Y H, CHEN H, et al. Numerical study of cryogenic cavitation based on convection heat transfer[J]. Journal of Propulsion Technology, 2019, 40(6): 1314-1323 (in Chinese). | |
15 | 项乐, 陈晖, 谭永华, 等. 液体火箭发动机诱导轮空化热力学效应研究[J]. 推进技术, 2020, 41(4): 812-819. |
XIANG L, CHEN H, TAN Y H, et al. Study of cavitation thermodynamic effect of liquid rocket engine inducer[J]. Journal of Propulsion Technology, 2020, 41(4): 812-819 (in Chinese). | |
16 | 任孝文, 李平, 陈宏玉, 等. 管路中常温推进剂的两相充填特性仿真[J]. 航空学报, 2022, 43(2): 125047. |
REN X W, LI P, CHEN H Y, et al. Simulation of two-phase filling characteristics of storable propellant in pipelines[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 125047 (in Chinese). | |
17 | 时素果, 王国玉. 一种修正的低温流体空化流动计算模型[J]. 力学学报, 2012, 44(2): 269-277. |
SHI S G, WANG G Y. A modified Kubota cavitation model for computations of cryogenic cavitating flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 269-277 (in Chinese). | |
18 | BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995. |
19 | 季斌, 白晓蕊, 祝叶, 等. 水力机械空化水动力学的几个基础问题研究[J]. 水动力学研究与进展, 2017, 32(5): 542-550. |
JI B, BAI X R, ZHU Y, et al. A review of the fundamental investigations of cavitation in hydraulic machinery[J]. Chinese Journal of Hydrodynamics, 2017, 32(5): 542-550 (in Chinese). | |
20 | 潘中永, 袁寿其. 泵空化基础[M]. 镇江: 江苏大学出版社, 2013: 70-75. |
PAN Z Y, YUAN S Q. Fundamentals of cavitation in pumps[M]. Zhenjiang: Jiangsu University Press, 2013: 70-75 (in Chinese). | |
21 | FRANC J P, MICHEL J M. Fundamentals of cavitation[M]. Berlin: Springer, 2004. |
22 | LEMMON E W, MCLINDEN M O, HUBER M L. REFPROP: Reference fluid thermodynamic and transport properties: Version 9.1[DB/OL]. Gaithersburg: NIST, 2013. |
23 | PETKOV?EK M, DULAR M. IR measurements of the thermodynamic effects in cavitating flow[J]. International Journal of Heat and Fluid Flow, 2013, 44: 756-763. |
24 | CHEN T R, HUANG B, WANG G Y, et al. Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics[J]. International Journal of Heat and Mass Transfer, 2016, 101: 886-900. |
25 | TSENG C C, SHYY W. Modeling for isothermal and cryogenic cavitation[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 513-525. |
26 | KIM J, SONG S J. Measurement of temperature effects on cavitation in a turbopump inducer[J]. Journal of Fluids Engineering, 2016, 138(1): 011304. |
27 | IGA Y, FURUSAWA T, SASAKI H. Interaction between thermodynamic suppression effect and Reynolds number promotion effect on cavitation in hot water[C]∥ Proceedings of the 10th International Symposium on Cavitation (CAV2018). Washington, D.C.: ASME Press, 2018: 576-580. |
28 | STAHL H A, STEPANOFF A J. Thermodynamic aspects of cavitation in centrifugal pumps[J]. Journal of Fluids Engineering, 1956, 78(8): 1691-1693. |
29 | MOORE R, RUGGERI R. Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds: NASA-TN-D-5292[R]. Washington, D.C.: NASA, 1969. |
30 | HORD J. Cavitation in liquid cryogens Ⅱ—Hydrofoil: NASA CR-2156[R]. Washington, D.C.: NASA, 1973. |
31 | HORD J. Cavitation in liquid cryogens—Ogives: NASA CR-2242[R]. Washington, D.C.: NASA, 1973. |
32 | 朱佳凯. 低温空化非稳态特性和机理研究[D]. 杭州: 浙江大学, 2018. |
ZHU J K. Study on unsteady characteristics and mechanisms of cryogenic cavitation[D]. Hangzhou: Zhejiang University, 2018 (in Chinese). | |
33 | 时素果. 空化热力学效应及数值计算模型研究[D]. 北京: 北京理工大学, 2012. |
SHI S G. Study of cavitation thermodynamic and numerical model[D]. Beijing: Beijing Institute of Technology, 2012 (in Chinese). | |
34 | REBOUD J L, SAUVAGE B E, DESLAUX J. Partial cavitation model for cryogenic fluids[C]∥ Cavitation and Multiphase Flow Forum, 1990: 75-80. |
35 | DESHPANDE M, FENG J Z, MERKLE C L. Numerical modeling of the thermodynamic effects of cavitation[J]. Journal of Fluids Engineering, 1997, 119(2): 420-427. |
36 | 陈泰然. 低温介质空化流动特性及其热力学效应研究[D]. 北京: 北京理工大学, 2020. |
CHEN T R. Investigation of unsteady characteristics and thermodynamic effects of cryogenic cavitating flows[D]. Beijing: Beijing Institute of Technology, 2020 (in Chinese). | |
37 | FRANC J P, REBATTET C, COULON A. An experimental investigation of thermal effects in a cavitating inducer[J]. Journal of Fluids Engineering, 2004, 126(5): 716-723. |
38 | FRANC J P, PELLONE C. Analysis of thermal effects in a cavitating inducer using Rayleigh equation[J]. Journal of Fluids Engineering, 2007, 129(8): 974-983. |
39 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part I: Geometrical similarity of leading edge cavities and cavitation instabilities[J]. Journal of Fluids Engineering, 2010, 132(2): 021303. |
40 | EHRLICH D A, MURDOCK J W. A dimensionless scaling parameter for thermal effects on cavitation in turbopump inducers[J]. Journal of Fluids Engineering, 2015, 137(4): 041103. |
41 | CERVONE A, BRAMANTI C, RAPPOSELLI E, et al. Thermal cavitation experiments on a NACA 0015 hydrofoil[J]. Journal of Fluids Engineering, 2006, 128(2): 326-331. |
42 | 项乐, 谭永华, 陈晖, 等. 水温对空化流动影响的数值研究[J]. 推进技术, 2020, 41(6): 1324-1333. |
XIANG L, TAN Y H, CHEN H, et al. Numerical study of effects of water temperature on cavitating flow[J]. Journal of Propulsion Technology, 2020, 41(6): 1324-1333 (in Chinese). | |
43 | ACOSTA A J. An experimental study of cavitating inducers[C]∥ Proceedings of the Second O.N.R. Symposium on Naval Hydrodynamics. Washington, D.C.: [s.n.], 1958: 533-557. |
44 | BALL C L, MENG P R. Cavitation performance of 84°helical pump inducer operated in 37°R and 42°R liquid hydrogen: NASA TM X-1360[R]. Washington, D.C.: NASA, 1967. |
45 | MENG P R, MOORE R D. Cavitation and non-cavitation performance of 78° helical inducer in hydrogen: NASA TM X-2131[R]. Washington, D.C.: NASA, 1968. |
46 | KOVICH G. Comparison of predicted and experimental cavitation performance of 84° helical inducer in water and hydrogen: NASA TN D-7016[R]. Washington, D.C.: NASA, 1970. |
47 | KOVICH G. Experimental and predicted cavitation performance of 80.6° helical inducer in high-temperature water: NASA-TN-D-6809[R]. Washington, D.C.: NASA, 1970. |
48 | YOSHIDA Y, KIKUTA K, HASEGAWA S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen[J]. Journal of Fluids Engineering, 2007, 129(3): 273-278. |
49 | KIKUTA K, YOSHIDA Y, WATANABE M, et al. Thermodynamic effect on cavitation performances and cavitation instabilities in an inducer[J]. Journal of Fluids Engineering, 2008, 130(11): 111302. |
50 | ITO Y, TANI N, KURISHITA Y, et al. New visualization test facility for liquid nitrogen and water cavitation in rotating inducer[C]∥ Proceedings of the 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012: 74-85. |
51 | ITO Y, TSUNODA A, KURISHITA Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects[J]. Journal of Propulsion and Power, 2015, 32(1): 71-82. |
52 | CERVONE A, TESTA R, BRAMANTI C, et al. Thermal effects on cavitation instabilities in helical inducers[J]. Journal of Propulsion and Power, 2005, 21(5): 893-899. |
53 | TORRE L, CERVONE A, PASINI A, et al. Experimental characterization of thermal cavitation effects on space rocket axial inducers[J]. Journal of Fluids Engineering, 2011, 133(11): 111303. |
54 | EHRLICH D A, VALENTINI D, PASINI A, et al. A water test facility liquid rocket engine turbopump cavitation testing[C]∥ Proceedings of the 7th International Symposium on Cavitation, 2009: 64-71. |
55 | LI X, LI J W, WANG J, et al. Study on cavitation instabilities in a three-bladed inducer[J]. Journal of Propulsion and Power, 2015, 31(4): 1051-1056. |
56 | 崔宝玲, 陈杰, 李晓俊, 等. 高速诱导轮离心泵内空化发展可视化实验与数值模拟[J]. 农业机械学报, 2018, 49(4): 148-155. |
CUI B L, CHEN J, LI X J, et al. Experiment and numerical simulation of cavitation evolution in high speed centrifugal pump with inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 148-155 (in Chinese). | |
57 | KAMIJO K, YOSHIDA M, TSUJIMOTO Y. Hydraulic and mechanical performance of LE-7 LOX pump inducer[J]. Journal of Propulsion and Power, 1993, 9(6): 819-826. |
58 | UCHIUMI M, KONNO A, KAMIJO K, et al. Improvement of inlet flow characteristics of LE-7A liquid hydrogen pump[C]∥ 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002: 4161. |
59 | YOSHINOBU T, YOSHIKI Y, YASUKAZU M, et al. Observations of oscillating cavitation of an inducer[J]. Journal of Fluids Engineering, 1997, 119(4): 775-781. |
60 | TSUJIMOTO Y, KAMIJO K, YOSHIDA Y. A theoretical analysis of rotating cavitation in inducers[J]. Journal of Fluids Engineering, 1993, 115(1): 135-141. |
61 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part Ⅱ: On-board measurements of temperature depression within leading edge cavities[J]. Journal of Fluids Engineering, 2010, 132(2): 1. |
62 | YOSHIDA Y, SASAO Y, OKITA K, et al. Influence of thermodynamic effect on synchronous rotating cavitation[J]. Journal of Fluids Engineering, 2007, 129(7): 871-876. |
63 | YOSHIDA Y, SASAO Y, WATANABE M, et al. Thermodynamic effect on rotating cavitation in an inducer[J]. Journal of Fluids Engineering, 2009, 131(9): 091302. |
64 | ITO Y, SATO Y, NAGASAKI T. Theoretical analyses of the number of backflow vortices on an axial pump or compressor[C]∥ Proceedings of ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. Washington, D.C.: ASME Press, 2019: 031103 |
65 | PACE G, VALENTINI D, PASINI A, et al. Analysis of flow instabilities on a three-bladed axial inducer in fixed and rotating frames[J]. Journal of Fluids Engineering, 2019, 141(4): 041104. |
66 | HADAVANDI R, PACE G, VALENTINI D, et al. Identification of cavitation instabilities on a three-bladed inducer by means of strain gages[J]. Journal of Fluids Engineering, 2020, 142(2): 021210. |
67 | LETTIERI C, SPAKOVSZKY Z, JACKSON D, et al. Characterization of cavitation instabilities in a four-bladed turbopump inducer[J]. Journal of Propulsion and Power, 2017, 34(2): 510-520. |
68 | KIM J, SONG S J. Measurement of thermal parameter and Reynolds number effects on cavitation instability onset in a turbopump inducer[J]. Journal of the Global Power and Propulsion Society, 2017, 1: H5DYU3. |
69 | KIM J, SONG S J. Visualization of rotating cavitation oscillation mechanism in a turbopump inducer[J]. Journal of Fluids Engineering, 2019, 141(9): 091103. |
70 | XIANG L, CHEN H, TAN Y H, et al. Study of thermodynamic cavitation effects in an inducer[J]. Journal of Propulsion and Power, 2019, 36(3): 312-322. |
71 | XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9): 168-177. |
72 | LI W, WU P, YANG Y F, et al. Investigation of the cavitation performance in an engine cooling water pump at different temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(5): 1094-1102. |
73 | GE M M, ZHANG G J, PETKOV?EK M, et al. Intensity and regimes changing of hydrodynamic cavitation considering temperature effects[J]. Journal of Cleaner Production, 2022, 338: 130470. |
74 | ZHANG H C, ZUO Z G, M?RCH K A, et al. Thermodynamic effects on Venturi cavitation characteristics[J]. Physics of Fluids, 2019, 31(9): 097107. |
75 | STEPANOFF A J. Cavitation in centrifugal pumps with liquids other than water[J]. Journal of Engineering for Power, 1961, 83(1): 79-89. |
76 | GELDER T F, MOORE R, RUGGERI R. Cavitation similarity considerations based on measured pressure and temperature depressions in cavitated regions of Freon 114: NASA-TN-D-3509[R]. Washington, D.C.: NASA, 1966. |
77 | MOORE R, RUGGERI R. Prediction of thermodynamic effects of developed cavitation based on liquid-hydrogen and Freon-114 data on scaled venturis[R]. Washington, D.C.: NASA, 1968. |
78 | BRENNEN C E. Hydrodynamics of pumps[M]. Norwich: Concepts ETI, 1994. |
/
〈 |
|
〉 |