Electronics and Electrical Engineering and Control

Survival intelligence and safety, immunity and green control technologies for unmanned systems

  • GUO Lei ,
  • ZHU Yukai ,
  • QIAO Jianzhong ,
  • GUO Kang ,
  • BAO Weimin
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Department of Mathematics and Theories, Pengcheng Laboratory, Shenzhen 518055, China;
    3. School of Astronautics, Beihang University, Beijing 100083, China;
    4. Science and Technology Commission, China Aerospace Science and Technology Corporation, Beijing 100048, China

Received date: 2022-03-08

  Revised date: 2022-03-17

  Online published: 2022-05-09

Supported by

National Natural Science Foundation of China (61127007, 61627810, 62103013, 62122007); China National Postdoctoral Program for Innovative Talents (BX20200031)

Abstract

Natural selection makes survival of the fittest. During billions of years of evolution, animals have formed the survival and reproduction abilities in the extreme environment in the presence of various challenges (e.g., virus invasion, environmental upheaval, natural enemy invasion, and population competition). Similar to animals, unmanned systems are affected by kinds of uncertain and abnormal factors including disturbance, attack, denies, damage, and fault. In the disturbance and confrontation environments, enabling unmanned systems to "self-learning" or "survival" has become one challenging problem. From the perspective of control, this paper proposes the concept of survival intelligence and three related key control factors of unmanned systems:safety control, immunity control, and green control. Safety control refers to the anti-disturbance and fault-tolerant control of unmanned systems subject to multiple disturbances and faults. Immunity control includes the autonomous sensing, self-regulation, and learning evolution of the system in face of confrontation and competition. Green control implies the control for "energy-saving""time-saving""strength-saving" and "burden-saving" of the unmanned systems under multiple constraints. Systems are like life, and devices are like organs. The purpose is to give life to unmanned systems in terms of intelligent behaviors and functions, and to achieve the leap from "method design""system design" to "behavior design", so as to improve the survival ability of unmanned systems in dangerous, extreme, special, and harsh environments.

Cite this article

GUO Lei , ZHU Yukai , QIAO Jianzhong , GUO Kang , BAO Weimin . Survival intelligence and safety, immunity and green control technologies for unmanned systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527129 -527129 . DOI: 10.7527/S1000-6893.2022.27129

References

[1] DARWIN C, EVANS H M, ROSE P. On the origin of species by means of natural selection:Or, the preservation of favoured races in the struggle for life[M]. London:John Murray, 1859.
[2] WIENER N. Cybernetics; or, control and communication in the animal and the machine[M]. Cambridge:MIT Press, 1948.
[3] ASHBY W R. An introduction to cybernetics[M]. New York:Wiley, 1956.
[4] FROESE T. Life after Ashby:Ultrastability and the autopoietic foundations of biological autonomy[J]. Cybernetics & Human Knowing, 2010, 17(4):7-50
[5] HEYLIGHEN F. Cybernetic principles of aging and rejuvenation:The buffering- challenging strategy for life extension[J]. Current Aging Science, 2014, 7(1):60-75.
[6] CHATTERJEE A, GEORGIEV G, IANNACCHIONE G. Aging and efficiency in living systems:Complexity, adaptation and self-organization[J]. Mechanisms of Ageing and Development, 2017, 163:2-7.
[7] TURING A M. Computing machinery and intelligence[J]. Mind, 1950, 59(236):433-460.
[8] 钱学森. 工程控制论[M]. 北京:科学出版社, 1958. TSIEN H S. Engineering cybernetics[M]. Beijing:Science Press, 1958.
[9] 杨嘉墀, 戴汝为. 智能控制在国内的进展[J]. 中国仪器仪表, 1993(4):8-13. YANG J C, DAI R W. Progress of intelligent control in China[J]. China Instrumentation, 1993(4):8-13 (in Chinese).
[10] 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用, 2016, 42(1):1-6. WU H X, HU J, XIE Y C. Spacecraft intelligent autonomous control:Past, present and future[J]. Aerospace Control and Application, 2016, 42(1):1-6 (in Chinese).
[11] 包为民. 航天智能控制技术让运载火箭"会学习"[J]. 航空学报, 2021, 42(11):525055. BAO W M. Space intelligent control technology enables launch vehicle to "self-learning"[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525055 (in Chinese).
[12] 郭雷. 不确定性动态系统的估计、控制与博弈[J]. 中国科学:信息科学, 2020, 50(9):1327-1344. GUO L. Estimation, control, and games of dynamical systems with uncertainty[J]. Scientia Sinica (Informationis), 2020, 50(9):1327-1344 (in Chinese).
[13] ZHENG N N, LIU Z Y, REN P J, et al. Hybrid-augmented intelligence:Collaboration and cognition[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2):153-179.
[14] 柴天佑. 工业人工智能发展方向[J]. 自动化学报, 2020, 46(10):2005-2012. CHAI T Y. Development directions of industrial artificial intelligence[J]. Acta Automatica Sinica, 2020, 46(10):2005-2012 (in Chinese).
[15] 戴琼海. 人工智能的几点思考[EB/OL]. (2020-09-02)[2022-03-01]. https://www.sohu.com/a/416149806_505819. DAI Q H. Some thoughts on artificial intelligence[EB/OL]. (2020-09-02)[2022-03-01]. https://www.sohu.com/a/416149806_505819 (in Chinese).
[16] 徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学:信息科学, 2021, 51(12):1967-1978. XU Z B. Ten fundamental problems for artificial intelligence:Mathematical and physical aspects[J]. Scientia Sinica (Informationis), 2021, 51(12):1967-1978 (in Chinese).
[17] 郑志明, 吕金虎, 韦卫, 等. 精准智能理论:面向复杂动态对象的人工智能[J]. 中国科学:信息科学, 2021, 51(4):678-690. ZHENG Z M, LV J H, WEI W, et al. Refined intelligence theory:Artificial intelligence regarding complex dynamic objects[J]. Scientia Sinica (Informationis), 2021, 51(4):678-690 (in Chinese).
[18] 陈杰, 辛斌. 有人/无人系统自主协同的关键科学问题[J]. 中国科学:信息科学, 2018, 48(9):1270-1274. CHEN J, XIN B. Key scientific problems in the autonomous cooperation of manned-unmanned systems[J]. Scientia Sinica (Informationis), 2018, 48(9):1270-1274 (in Chinese).
[19] 王耀南. 人工智能赋能无人系统[J]. 智能系统学报, 2021, 16(1):6. WANG Y N. Artificial intelligence enabled unmanned system[J]. CAAI Transactions on Intelligent Systems, 2021, 16(1):6 (in Chinese).
[20] WU C, ZHANG T. Intelligent unmanned systems:Important achievements and applications of new generation artificial intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5):649-651.
[21] SANTOSO F, GARRATT M A, ANAVATTI S G. State-of-the-art intelligent flight control systems in unmanned aerial vehicles[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(2):613-627.
[22] ÅSTRÖM K J, KUMAR P R. Control:A perspective[J]. Automatica, 2014, 50(1):3-43.
[23] GUO L, CHEN W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach[J]. International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125.
[24] GUO L, CAO S Y. Anti-disturbance control for systems with multiple disturbances[M]. Boca Raton:CRC Press, 2013.
[25] GUO L, CAO S Y. Anti-disturbance control theory for systems with multiple disturbances:A survey[J]. ISA Transactions, 2014, 53(4):846-849.
[26] 郭雷, 朱玉凯. 多源干扰系统复合自主抗干扰控制技术[M]//中国科研信息化蓝皮书, 2020:210-220. GUO L, ZHU Y K. Composite autonomous anti-disturbance control for systems with multiple disturbances[M]//China's e-Science Blue Book, 2020:210-220 (in Chinese).
[27] 郭雷, 余翔, 张霄, 等. 无人机安全控制系统技术:进展与展望[J]. 中国科学:信息科学, 2020, 50(2):184-194. GUO L, YU X, ZHANG X, et al. Safety control system technologies for UAVs:Review and prospect[J]. Scientia Sinica (Informationis), 2020, 50(2):184-194 (in Chinese).
[28] YUAN Y, YUAN H H, HO D W C, et al. Resilient control of wireless networked control system under denial-of-service attacks:A cross-layer design approach[J]. IEEE Transactions on Cybernetics, 2020, 50(1):48-60.
[29] 郭雷, 袁源, 乔建忠, 等. 无人系统免疫智能技术[J]. 航空学报, 2020, 41(11):024618. GUO L, YUAN Y, QIAO J Z, et al. Immune intelligence of unmanned system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):024618 (in Chinese).
[30] YU X. Autonomous safety control of flight vehicles[M]. Boca Raton:CRC Press, 2021.
[31] YUAN Y, YANG H J, GUO L, et al. Analysis and design of networked control systems under attacks[M]. Boca Raton:CRC Press, 2019.
[32] GUO L, ZHU Y K, QIAO J Z, et al. Composite anti-disturbance dynamic regulation for systems with multiple disturbances:From stability to balance[C]//2021 33rd Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press, 2021:5685-5690.
[33] GU Y P, YU X, GUO K X, et al. Detection, estimation, and compensation of false data injection attack for UAVs[J]. Information Sciences, 2021, 546:723-741.
[34] GUO K X, JIA J D, YU X, et al. Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances[J]. Control Engineering Practice, 2020, 102:104560.
[35] DING Y S, XU N, DAI S F, et al. An immune system-inspired reconfigurable controller[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1875-1882.
[36] ZHENG J Q, CHEN Y F, ZHANG W. A survey of artificial immune applications[J]. Artificial Intelligence Review, 2010, 34(1):19-34.
[37] ZHU Y K, QIAO J Z, ZHANG Y M, et al. High-precision trajectory tracking control for space manipulator with neutral uncertainty and deadzone nonlinearity[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5):2254-2262.
[38] ZHU Y K, QIAO J Z, GUO L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983.
[39] CUI Y Y, YANG Y J, ZHU Y K, et al. Composite velocity-tracking control for flexible gimbal system with multi-frequency-band disturbances[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(10):4360-4370.
[40] DUAN G R. High-order fully actuated system approaches:Part VII. Controllability, stabilisability and parametric designs[J]. International Journal of Systems Science, 2021, 52(14):3091-3114.
[41] 张霄, 王悦, 郭雷. 强干扰环境下的自主导航与控制新技术[J]. 自动化博览, 2015(4):68-72. ZHANG X, WANG Y, GUO L. Novel technology of autonomous navigation and control in strong disturbance environments[J]. Automation Panorama, 2015(4):68-72 (in Chinese).
[42] ZHU D J, YANG S X. Bio-inspired neural network-based optimal path planning for UUVs under the effect of ocean currents[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2):231-239.
Outlines

/