Fluid Mechanics and Flight Mechanics

Dynamic drag reduction mechanism of self-aligned aerodisks on hypersonic aircraft

  • Rong HAN ,
  • Wei LIU ,
  • Xiaoliang YANG
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2021-11-08

  Revised date: 2022-04-15

  Accepted date: 2022-05-06

  Online published: 2022-05-09

Supported by

National Key Project(GJXM92579)

Abstract

To address the drag reduction problem of hypersonic aircraft during dynamic maneuver, the dynamic drag reduction effects of self-aligned aerodisks are studied based on the unsteady flow/kinematics coupled method and dynamic hybrid grid generation technique. Drag characteristics of aircraft are also analyzed with variation of different parameters to provide reference for hypersonic aircraft design and optimization. In addition, differences in dynamic drag reduction mechanisms between the fixed and self-aligned aerodisks are discussed. The numerical results show that self-aligned aerodisks, always aligning with the incoming flow, are helpful to maintain the structure of recirculation zone during maneuvering. Moreover, self-aligned aerodisks are able to reconstruct the flow field even at a high angle of attack. Compared to that of fixed aerodisks, the drag reduction effect of self-aligned aerodisks can be largely improved in more than 80% of the oscillation period. Furthermore, the superiority of the self-aligned method clearly increases with the growing pitch angle.

Cite this article

Rong HAN , Wei LIU , Xiaoliang YANG . Dynamic drag reduction mechanism of self-aligned aerodisks on hypersonic aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 126633 -126633 . DOI: 10.7527/S1000-6893.2022.26633

References

1 孟玉珊. 减阻杆组合体减阻防热耦合机理研究 [D]. 长沙: 国防科技大学, 2020: 1-3.
  MENG Y S. Coupled investigation on drag reduction and thermal protection mechanism induced by the spike and its combinations[D]. Changsha: National University of Defense Technology, 2020: 1-3 (in Chinese).
2 BUSHNELL D A. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics200436(1): 81-96.
3 HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A201516(7): 551-561.
4 GNEMMI P, SRULIJES J, ROUSSEL K, et al. Flowfield around spike-tipped bodies for high attack angles at Mach 4.5[J]. Journal of Spacecraft and Rockets200340(5): 622-631.
5 SRULIJES J, GNEMMI P, RUNNE K, et al. High-pressure shock tunnel experiments and CFD calculations on spike-tipped blunt bodies[C]∥22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002.
6 NICHOLSON J E, HILL J A F, WILSON JR J C. Self-balancing spike control: US3416758[P]. 1968-12-17.
7 SCHNEPF C, WYSOCKI O, SCHüLEIN E. Wave drag reduction with a self-aligning aerodisk on a missile configuration[C]∥Progress in Flight Physics. Les Ulis: EDP Sciences, 2017.
8 SCHNEPF C, WYSOCKI O, SCHüLEIN E. Wave drag reduction due to a self-aligning aerodisk[C]∥Progress in Flight Physics - Volume 7. Les Ulis: EDP Sciences, 2015.
9 WYSOCKI O, SCHüLEIN E, SCHNEPF C. Experimental study on wave drag reduction at slender bodies by a self-aligning aerospike[M]∥ Notes on numerical fluid mechanics and multidisciplinary Design. Cham: Springer International Publishing, 2014: 583-590.
10 SCHüLEIN E. Shock-wave control by permeable wake generators[C]∥5th Flow Control Conference. Reston: AIAA, 2010.
11 SCHüLEIN E. Wave drag reduction concept for blunt bodies at high angles of attack[M]∥ Shock waves. Berlin: Springer Berlin Heidelberg, 2009: 1315-1320.
12 SCHüLEIN E. Wave drag reduction approach for blunt bodies at high angles of attack: Proof-of-concept experiments[C]∥ 4th Flow Control Conference. Reston: AIAA, 2008.
13 GENG Y F, YU J, KONG W X. Investigation on a new method of adaptive drag reduction and non-ablation thermal protection system for hypersonic vehicles[J]. Acta Aerodynamic Sinica201230(4): 493-501.
14 DENG F, JIAO Z H, LIANG B B, et al. Spike effects on drag reduction for hypersonic lifting body[J]. Journal of Spacecraft and Rockets201754(6): 1185-1195.
15 HUANG J, YAO W X, QIN N. Heat reduction mechanism of hypersonic spiked blunt body with installation angle at large angle of attack[J]. Acta Astronautica2019164: 268-276.
16 刘伟, 赵海洋, 杨小亮. 返回舱动态稳定性分析及被动控制方法研究[J]. 中国科学: 物理学 力学 天文学201040(9): 1156-1164.
  LIU W, ZHAO H Y, YANG X L. Analysis of dynamic stability and research of passive control method for capsule[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201040(9): 1156-1164 (in Chinese).
17 赵忠良, 杨海泳, 马上, 等. 某典型飞行器模型俯仰/滚转两自由度耦合动态气动特性[J]. 航空学报201839(12): 122375.
  ZHAO Z L, YANG H Y, MA S, et al. Unsteady aerodynamic characteristics of two-degree-of-freedom pitch/roll coupled motion for a typical vehicle model[J]. Acta Aeronautica et Astronautica Sinica201839(12): 122375 (in Chinese).
18 赖江, 赵忠良, 王晓冰, 等. 匀速俯仰运动及角速率对横向喷流的影响[J]. 航空学报201940(10): 122866.
  LAI J, ZHAO Z L, WANG X B, et al. Uniform pitching motion and angular rate effects on transverse jet interaction[J]. Acta Aeronautica et Astronautica Sinica201940(10): 122866 (in Chinese).
19 邓维. 弹箭俯仰阻尼动导数计算与分析[D]. 南京: 南京理工大学, 2017: 1-9.
  DENG W. Predictions and analysis of pitching dynamic derivatives for rocket[D]. Nanjing: Nanjing University of Science and Technology, 2017: 1-9 (in Chinese).
20 MENEZES V, SARAVANAN S, JAGADEESH G, et al. Experimental investigations of hypersonic flow over highly blunted cones with aerospikes[J]. AIAA Journal200341(10): 1955-1966.
21 ZHANG L P, CHANG X H, DUAN X P, et al. A block LU-SGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations[J]. Computers & Fluids200938(2): 290-308.
22 马戎, 常兴华, 赫新, 等. 流动/运动松耦合与紧耦合计算方法及稳定性分析[J]. 气体物理20161(6): 36-49.
  MA R, CHANG X H, HE X, et al. Loose and strong coupling methods for flow/kinematics coupled simulations and stability analysis[J]. Physics of Gases20161(6): 36-49 (in Chinese).
23 EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets198825(3): 225-233.
24 刘绪. 高超声速内外流一体化飞行器动态特性研究[D]. 长沙: 国防科技大学, 2011:14-43.
  LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha: National University of Defense Technology, 2011:14-43 (in Chinese).
25 袁先旭. 非定常流动数值模拟及飞行器动态特性分析研究 [D]. 绵阳: 中国空气动力研究与发展中心, 2002.
  YUAN X X. Numerical simulation of unsteady flow and analysis of aircraft dynamic characteristics[D]. Mianyang: China Aerodynamics Research and Development Center, 2002 (in Chinese).
26 OKTAY E, AKAY H. CFD predictions of dynamic derivatives for missiles[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
27 KHARATI-KOOPAEE M, GAZOR H. Assessment of the aerodisk size on drag reduction and thermal protection of high-bluntness vehicles at hypersonic speeds[J]. Journal of Aerospace Engineering201730(4): 0417008.
Outlines

/