Solid Mechanics and Vehicle Conceptual Design

Application of morphological parameter identification for Mars parachute during opening process

  • Xin ZOU ,
  • Minglei LI ,
  • Daiyin ZHU ,
  • Wei RAO ,
  • Chengzhi HAN ,
  • Ying LI
Expand
  • 1.Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
    2.College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: zouxin501@163.com

Received date: 2022-01-28

  Revised date: 2022-03-03

  Accepted date: 2022-04-11

  Online published: 2022-04-24

Supported by

National Science and Technology Major Project

Abstract

Aiming at the difficulty in obtaining data for flexible targets under conditions such as significant changes in morphology, large variation in light intensity, poor regularity of motion, and existence of target occlusion during the parachute opening process, we propose a morphological parameter identification method based on vision measurement of multi-algorithm fusion. Firstly, we design a parachute pattern with the visual measurement function for targets, providing a wealth of distinguishable marker points to accurately track and measure the anchor points. The internal and external parameter calibration of binocular cameras is carried out. Then the application of the epipolar geometry principle is proposed. The image enhancement technology based on the dark channel is adopted to improve the image quality and effectively reduce the influence of various environmental factors such as noise and overexposure. The feature tracking of the extended Kalman filter algorithm is used to improve the accuracy and efficiency of feature matching tracking. The super-resolution reconstruction algorithm based on sparse coding is employed to improve the pixel-level extraction of feature points and achieve high precision sub-pixel level feature extraction. Finally the identification method is verified by a full-size high-altitude parachute opening experiment. The results show that the method can achieve high identification accuracy with good precision and robustness. This identification method is successfully applied to the circumlunar return and reentry spacecraft of China’s first Mars exploration mission – Tianwen -1 probe. The morphological parameters during the parachute opening process are accurately identified from binocular images, and the on-orbit results provide important technical reference and data accumulation for the design and analysis of parachute opening conditions.

Cite this article

Xin ZOU , Minglei LI , Daiyin ZHU , Wei RAO , Chengzhi HAN , Ying LI . Application of morphological parameter identification for Mars parachute during opening process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 227007 -227007 . DOI: 10.7527/S1000-6893.2022.27007

References

1 FOUGHNER J T. Viking Mars mission support investigations in the Langley transonic dynamics tunnel: TM-80234[R]. Washington,D.C.: NASA, 1980.
2 FALLON II E J. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997- 1511[R]. Reston: AIAA, 1997.
3 WITKOWSKI A. Mars Pathfinder parachute system performance: AIAA-1999-1701[R]. Reston: AIAA, 1999.
4 WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview: AIAA-2003-2100[R]. Reston: AIAA, 2003.
5 WITKOWSKI A, KANDIS M, BRUNO R, et al. Mars exploration rover parachute system performance: AIAA-2005-1605[R]. Reston: AIAA, 2005.
6 PRINCE J L, DESAI P N, QUEEN E M, et al. Mars phoenix entry, descent, and landing simulation design and modeling analysis[J]. Journal of Spacecraft and Rockets201148(5): 756-764.
7 WITKOWSKI A, KANDIS M, ADAMS D. Mars scout phoenix parachute system performance: AIAA-2009-2907[R]. Reston: AIAA, 2009.
8 SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system: AIAA-2009-2900[R]. Reston: AIAA, 2009.
9 CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation: AIAA-2013-1276[R]. Reston: AIAA, 2013.
10 WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013-1277[R]. Reston: AIAA, 2013.
11 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997.
  WANG L R. Parachute theory and application[M]. Beijing: China Astronautics Press, 1997 (in Chinese).
12 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感200728(4): 12-16.
  YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing200728(4): 12-16 (in Chinese).
13 贾贺, 包进进, 荣伟. 设计参数及大气参数对降落伞充气性能的影响[J]. 航天返回与遥感202041(3): 28-36.
  JIA H, BAO J J, RONG W. The design and atmospheric parameters influences on parachute inflation performance[J]. Spacecraft Recovery & Remote Sensing202041(3): 28-36 (in Chinese).
14 BARBER J, JOHARI H. Experimental investigation of personnel parachute designs using scale model wind tunnel testing: AIAA-2001-2074[R]. Reston: AIAA, 2001.
15 SHANNON M P. Experimental analysis of the pressure distribution on a 35-foot personnel parachute: AIAA- 2001-2008[R]. Reston: AIAA, 2001.
16 DESABRAIS K J, JOHARI H. The flow in the near wake of an inflating parachute canopy: AIAA-2001-2009[R]. Reston: AIAA, 2001.
17 DESABRAIS K J. Velocity field measurements in the near wake of a parachute canopy[D]. Worcester: Worcester Polytechnic Institute, 2002.
18 STEIN K. Parachute fluid-structure interactions: 3-D computation[J]. Computer Methods in Applied Mechanics and Engineering2000190(3-4): 373-386.
19 高兴龙, 张青斌, 丰志伟, 等. 集成火星进入弹道的开伞过程动力学特性研究[J]. 宇航学报201637(6): 664-670.
  GAO X L, ZHANG Q B, FENG Z W, et al. Study on dynamic characteristic of opening process integrating with Mars entry trajectory[J]. Journal of Astronautics201637(6): 664-670 (in Chinese).
20 SCHOENENBERGER M, QUEEN E M, CRUZ J R. Parachute aerodynamics from video data: AIAA-2005- 1633[R]. Reston: AIAA, 2005.
21 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报201634(1): 70-79.
  ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica201634(1): 70-79 (in Chinese).
22 宋晋, 马军, 蒋敏, 等. 双目视觉系统在风洞伞摆角测量中的研究与应用[J]. 计算机测量与控制201220(8): 2042-2044.
  SONG J, MA J, JIANG M, et al. Research and application of parachute swing angle in wind tunnel test based on stereo vision measurement system[J]. Computer Measurement & Control201220(8): 2042-2044 (in Chinese).
23 杨贤文, 郝东, 易国庆, 等. 火星探测降落伞模型高速风洞变迎角试验技术[J]. 宇航学报201940(12): 1461-1467.
  YANG X W, HAO D, YI G Q, et al. Variable angle of attack test technique of Mars exploration parachute model in high speed wind tunnel[J]. Journal of Astronautics201940(12): 1461-1467 (in Chinese).
24 LATEGAHN H, DERENDARZ W, GRAF T, et al. Occupancy grid computation from dense stereo and sparse structure and motion points for automotive applications[C]∥2010 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2010.
25 KRYS D, NAJJARAN H. INS assisted vision-based localization in unstructured environments[C]∥2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2008.
26 李建, 李小民, 钱克昌, 等. 基于双目视觉和惯性器件的微小型无人机运动状态估计方法[J]. 航空学报201132(12): 2310-2317.
  LI J, LI X M, QIAN K C, et al. Motion state estimation for micro UAV using inertial sensor and stereo camera pair[J]. Acta Aeronautica et Astronautica Sinica201132(12): 2310-2317 (in Chinese).
27 PREDMORE C R. Bundle adjustment of multi-position measurements using the Mahalanobis distance[J]. Precision Engineering201034(1): 113-123.
28 DONOHO D L. For most large underdetermined systems of equations, the minimal l1-norm near-solution approx-imates the sparsest near-solution[J]. Communications on Pure and Applied Mathematics200659(7): 907-934.
29 YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society201019(11): 2861-2873.
30 YANG J C, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008.
31 ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]∥ Curves and Surfaces. Haifa: Israel Institute of Technology, 2012.
32 YANG J C, WANG Z W, LIN Z, et al. Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society201221(8): 3467-3478.
33 LIU Y, SUN Z D. EKF-based adaptive sensor scheduling for target tracking[C]∥2008 International Symposium on Information Science and Engineering. Piscataway: IEEE Press, 2008.
34 孙博文, 王大轶, 王炯琦, 等. 基于序列图像的航天器自主导航降维滤波方法[J]. 航空学报202142(4): 524971.
  SUN B W, WANG D Y, WANG J Q, et al. Filter method for dimension reduction in spacecraft autonomous navigation based on sequence image[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524971 (in Chinese).
35 RAJENDRAN V, OBRACZKA K, GARCIA-LUNA-ACEVES J J. Energy-efficient, collision-free medium access control for wireless sensor networks[J]. Wireless Networks200612(1): 63-78.
36 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报201132(6): 1084-1091.
  WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica201132(6): 1084-1091 (in Chinese).
37 YE J Z, ZHAO L, LUO W F. Performances of localization algorithms in a prototype WSN system[J]. Advanced Materials Research2012457-458: 723-727.
Outlines

/