Fluid Mechanics and Flight Mechanics

Patch module method for flight simulation of flexible aircraft

  • Peihan WANG ,
  • Zhigang WU ,
  • Chao YANG ,
  • Xiaoxu SUN
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing  100191,China
    2.Seahawk Aviation General Equipment Co. ,Ltd. ,Beijing  100070,China

Received date: 2022-02-14

  Revised date: 2022-03-09

  Accepted date: 2022-03-30

  Online published: 2022-04-12

Abstract

Modern aircrafts increasingly exhibit characteristics of light structure, large flexibility, and low damping, while the aeroelastic effect has become an important factor, enabling significantly different motion responses of flexible aircraft from those of rigid aircraft. However, the demand to solve rigid-elastic coupling equations increases the difficulty in modeling and validation of flexible aircraft. This paper proposes a patch module method suitable for flight simulations of flexible aircraft. This "patch module" consists of decomposition of generalized aerodynamic forces and superposition of incremental measurement signals of elastic vibrations. Then it is embedded into flight simulations of six-degree-of-freedom full equations of rigid aircraft to transform them into those of flexible aircraft. This method fully utilizes the original model of rigid aircraft, simplifies the modeling process of flexible aircraft, and contributes to the development of subsequent projects. Numerical results of an unmanned aerial vehicle with a large aspect ratio are obtained through flight simulations of flexible aircraft based on the patch module method, and the corresponding trim methods are introduced. The feasibility and accuracy of the flight simulation method are validated during the study of maneuvering response, aerodynamic nonlinearity and aeroservoelastic stability.

Cite this article

Peihan WANG , Zhigang WU , Chao YANG , Xiaoxu SUN . Patch module method for flight simulation of flexible aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 127038 -127038 . DOI: 10.7527/S1000-6893.2022.27038

References

1 童中翔, 王晓东. 飞行仿真技术的发展与展望[J]. 飞行力学200220(3): 5-8.
  TONG Z X, WANG X D. Development and prospect of flight simulation technology[J]. Flight Dynamics200220(3): 5-8 (in Chinese).
2 高亚奎, 朱江, 林皓,等. 飞行仿真技术[M]. 上海: 上海交通大学出版社, 2015: 1-3, 85-88, 103-105.
  GAO Y K, ZHU J, LIN H,et al. Flight simulation technology[M]. Shanghai:Shanghai Jiao Tong University Press, 2015: 1-3, 85-88, 103-105 (in Chinese).
3 关世义. 计算飞行力学的产生和发展[J]. 航空学报200122(1): 1-5.
  GUAN S Y. Development of computational flight mechanics[J]. Acta Aeronautica et Astronautica Sinica200122(1): 1-5 (in Chinese).
4 关世义. 关于飞行力学的再思考[J]. 战术导弹技术2003(2): 1-12.
  GUAN S Y. A far and wide review of flight mechanics[J]. Tactical Missile Technology2003(2):1-12 (in Chinese).
5 WU Z G, YANG C. Flight loads and dynamics of flexible air vehicles[J]. Chinese Journal of Aeronautics200417(1): 17-22.
6 郭东, 徐敏, 陈士橹. 弹性飞行器飞行动力学建模研究[J]. 空气动力学学报20133 1(4): 413-419, 436.
  GUO D, XU M, CHEN S L. Research on flight dynamic modeling of highly flexible aircrafts[J]. Acta Aerodynamica Sinica201331(4): 413-419,436 (in Chinese).
7 WASZAK M R, SCHMIDT D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft198825(6):563-571.
8 WASZAK M R, BUTTRILL C S, SCHMIDT D K. Modeling and model simplification of aeroelastic vehicles:An overview: NASA-TM-107691[R]. Washington, D.C.: NASA, 1992.
9 SCHMIDT D K, RANEY D L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance, Control,and Dynamics200124(3): 539-546.
10 SALTARI F, RISO C, MATTEIS G D,et al. Finite-element-based modeling for flight dynamics and aeroelasticity of flexible aircraft[J]. Journal of Aircraft201754(6):2350-2366.
11 LIU Y, XIE C C. Aeroservoelastic stability analysis for flexible aircraft based on a nonlinear coupled dynamic model[J]. Chinese Journal of Aeronautics201831(12): 2185-2198.
12 Zú?IGA D F C, SOUZA A G, GóES L C S. Flight dynamics modeling of a flexible wing unmanned aerial vehicle[J]. Mechanical Systems and Signal Processing2020145: 106900.
13 孙若琳. 基于气动力降阶的弹性飞行器飞行动力学建模分析[D]. 北京: 北京航空航天大学, 2018: 3-5.
  SUN R L. Flight dynamics simulation of elastic aircraft based on aerodynamic reduced-order modeling[D]. Beijing:Beihang University, 2018: 3-5 (in Chinese).
14 师妍, 万志强, 吴志刚,等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报202243(1):125474.
  SHI Y, WAN Z Q, WU Z G,et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica202243(1): 125474 (in Chinese).
15 师妍, 万志强, 吴志刚, 等. 适用于弹性飞机飞行动力学仿真的气动力降阶方法研究[J/OL]. 北京航空航天大学学报, (2021-12-30) [2022-02-10]. .
  SHI Y, WAN Z Q, WU Z G, et al. Research on aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2021-12-30) [2022-02-10]. (in Chinese).
16 LOOYE G. Integration of rigid and aeroelastic aircraft models using the residualised model method[C]∥ CEAS/AIAA/DGLR International Forum on Aeroelasticity and Structural Dynamics 2005. München:IFASD,2005.
17 KIER T, LOOYE G. Unifying manoeuvre and gust loads analysis[C]∥International Forum on Aeroelasticity and Structural Dynamics. Savannah:IFASD,2009.
18 CASTRICHINI A, WILSON T, SALTARI F,et al. Aeroelastics flight dynamics coupling effects of the semi-aeroelastic hinge device[J]. Journal of Aircraft202057(2): 333-341.
19 CHEN P C, BALDELLI D, ZENG J. Dynamic flight simulation(DFS)tool for nonlinear flight dynamic simulation including aeroelastic effects[C]∥ AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA,2008.
20 TUEGEL E. The airframe digital twin:some challenges to realization[C]∥ 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
21 ALLERTON D. Principles of flight simulation[M]. Chichester: John Wiley & Sons.Ltd., 2009: 16-18.
22 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 20-22, 174-186.
  FANG Z P, CHEN W C, ZHANG S G. Flight mechanics of aircraft[M]. Beijing: Beihang University Press, 2005: 20-22, 174-186 (in Chinese).
23 PAMADI B N. Performance, stabiliy, dynamics and control of airplanes[M]. Reston: AIAA, 2015: 341-417.
24 管德. 非定常空气动力计算[M]. 北京: 北京航空航天大学出版社, 1991: 100-151.
  GUAN D. Unsteady aerodynamic forces calculation[M]. Beijing :Beihang University Press, 1991: 100-151 (in Chinese).
25 TIFFANG S H, KARPEL M. Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [C]∥ 30th Sturctures, Structural Dynamics and Materials Conference, 1989.
26 KARPEL M, STRUL E. Minimum-state unsteady aerodynamic approximations with flexible constraints[J]. Journal of Aircraft199633(6):1190-1196.
27 KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge:Cambridge University Press, 2001: 331-368.
28 ZAER O. Software package[M]. Scottsdale: ZONA Technology Inc., 2008: 223-227.
29 布罗克豪斯. 飞行控制[M]. 金长江, 译. 北京:国防工业出版社, 1997: 125-127.
  BROCKHAUS R. Flight control[M]. JIN C J, translation. Beijing: National Defense Industry Press, 1997: 125-127 (in Chinese).
30 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报201536(4): 1011-1033.
  YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica201536(4): 1011-1033 (in Chinese).
31 杨超. 飞行器气动弹性原理[M]. 2版. 北京: 北京航空航天大学出版社, 2016: 1-11, 199-203.
  YANG C. Principal of aircraft aeroelasticity[M]. 2nd ed. Beijing: Beihang University Press,2016: 1-11, 199-203 (in Chinese).
32 李秋彦,李刚,魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报202041(6): 523430.
  LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced flight[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523430 (in Chinese).
33 黄锐,胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展202151(3): 428-466.
  HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics202151(3): 428-466 (in Chinese).
Outlines

/