Electronics and Electrical Engineering and Control

Predictive fifth-degree cubature Kalman filter method

  • Xiangdan ZHAO ,
  • Biao WANG ,
  • Zhisheng WANG ,
  • Zhong YANG
Expand
  • College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2021-12-14

  Revised date: 2021-12-31

  Accepted date: 2022-03-21

  Online published: 2022-04-12

Supported by

Aeronautical Science Foundation of China(201928052006);Guizhou Provincial Science and Technology Projects([2020]2Y044)

Abstract

A Predictive fifth-degree Cubature Kalman Filter (P5thCKF) method, which combines the Predictive Filter (PF) and the High-degree Cubature Kalman Filter (HCKF) is proposed for strongly nonlinear and non-Gaussian process noise systems. The PF is used to adjust the process noise and variance matrix in the system model in real time, and then the new model is put into the fifth-degree cubature Kalman filter framework to perform real-time recursive state estimation. The fifth-degree spherical simplex-radial rule is derived and is used to deal with spherical integration, and the generalized Gauss-Laguerre integral rule is used to deal with radial integration. The predictive filtering method is described, and the error adjustment amount of the model derived. The feasibility of the proposed method in strongly nonlinear and non-Gaussian process noise systems and its possible application to engineering practice are verified by two simulation experiments.

Cite this article

Xiangdan ZHAO , Biao WANG , Zhisheng WANG , Zhong YANG . Predictive fifth-degree cubature Kalman filter method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 326817 -326817 . DOI: 10.7527/S1000-6893.2022.26817

References

1 ARASARATNAM I, HAYKIN S, ELLIOTT R J. Discrete-time nonlinear filtering algorithms using Gauss-hermite quadrature[J]. Proceedings of the IEEE200795(5): 953-977.
2 ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control200954(6): 1254-1269.
3 JIA B. High-degree cubature Kalman filter[J]. Automatica201349(2): 510-518.
4 WANG S Y, FENG J C, TSE C K. Spherical simplex-radial cubature Kalman filter[J]. IEEE Signal Processing Letters201421(1): 43-46.
5 ZHANG Y G, HUANG Y L, WU Z M, et al. Seventh-degree spherical simplex-radial cubature Kalman filter[C]∥The 33th Chinese Control Conference, 2014: 2513-2517.
6 李兆铭, 杨文革, 丁丹, 等. 高阶球面单形—径向容积求积分卡尔曼滤波算法[J]. 通信学报201738(8): 111-117.
  LI Z M, YANG W G, DING D, et al. High-degree spherical simplex-radial cubature quadrature Kalman filter[J]. Journal on Communications201738(8): 111-117 (in Chinese).
7 孟东, 缪玲娟, 邵海俊, 等. 七阶正交容积卡尔曼滤波算法[J]. 航空学报201738(12): 321410.
  MENG D, MIAO L J, SHAO H J, et al. A seventh-degree cubature quadrature Kalman filter[J]. Acta Aeronautica et Astronautica Sinica201738(12): 321410 (in Chinese).
8 赵明亮, 汪立新, 关永祥, 等. 七阶球面单形-径向容积卡尔曼滤波方法[J]. 现代防御技术201947(1): 26-32, 89.
  ZHAO M L, WANG L X, GUAN Y X, et al. Seventh-degree spherical simplex-radial cubature Kalman filtering method[J]. Modern Defence Technology201947(1): 26-32, 89 (in Chinese).
9 CRASSIDIS J L, MARKLEY F L. Predictive filtering for nonlinear systems[J]. Journal of Guidance, Control, and Dynamics199720(3): 566-572.
10 张红梅, 刘胜, 孙明健. 最优状态估计理论及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019.
  ZHANG H M, LIU S, SUN M J. Theory and application of optimal state estimation[M]. Harbin: Harbin Institute of Technology Press, 2019 (in Chinese).
11 LU J, DARMOFAL D L. Higher-dimensional integration with Gaussian weight for applications in probabilistic design[J]. SIAM Journal on Scientific Computing200426(2): 613-624.
12 HILDEBRAND B. Introduction to numerical analysis [M]. New York: McGraw-Hill, 1956
13 关治, 陆金甫. 数值方法[M]. 北京: 清华大学出版社, 2006.
  GUAN Z, LU J F. Numerical method [M]. Beijing: Tsinghua University Press, 2006 (in Chinese).
14 OWEN D B, ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables[J]. Technometrics19657(1): 78.
15 MOOK D J, JUNKINS J L. Minimum model error estimation for poorly modeled dynamic systems[J]. Journal of Guidance, Control, and Dynamics198811(3): 256-261.
16 任玥, 冀杰, 赵颖, 等. 基于最小模型误差估计的智能汽车路径跟踪控制[J]. 汽车工程202143(4): 580-587.
  REN Y, JI J, ZHAO Y, et al. Path tracking control of intelligent vehicle based on minimal model error estimation[J]. Automotive Engineering202143(4): 580-587 (in Chinese).
17 赵利强, 陈坤云, 王建林, 等. 基于矩阵对角化变换的高阶容积卡尔曼滤波[J]. 控制与决策201631(6): 1080-1086.
  ZHAO L Q, CHEN K Y, WANG J L, et al. High-degree cubature Kalman filter based on diagonalization of matrix[J]. Control and Decision201631(6): 1080-1086 (in Chinese).
18 朱新坚,曹广益. 线性系统、强非线性系统、目标与控制[J]. 浙江大学学报1998(S):1-5.
  ZHU X J, CAO G Y. Objectives and control of linear systems and strongly nonlinear systems[J]. Journal of Zhejiang University1998(S):1-5 (in Chinese).
19 张海涛, 陈宗海, 向微, 等. 强非线性系统的一种快速神经网络控制策略[J]. 模式识别与人工智能200316(4): 385-389.
  ZHANG H T, CHEN Z H, XIANG W, et al. A fast neural network control strategy of a severe nonlinear system[J]. Pattern Recognition and Artificial Intelligence200316(4): 385-389 (in Chinese).
20 全权, 戴训华, 王帅. 多旋翼飞行器设计与控制实践[M]. 北京: 电子工业出版社, 2020.
  QUAN Q, DAI X H, WANG S. Introduction to multicopter design and control [M]. Beijing: Publishing House of Electronics industry, 2020 (in Chinese).
21 储开斌, 赵爽, 冯成涛. 基于Mahony-EKF的无人机姿态解算算法[J]. 电子测量与仪器学报202034(12): 12-18.
  CHU K B, ZHAO S, FENG C T. UAV attitude calculation algorithm based on Mahony-EKF[J]. Journal of Electronic Measurement and Instrumentation202034(12): 12-18 (in Chinese).
22 刘旭航, 刘小雄, 章卫国, 等. 基于加速度修正模型的无人机姿态解算算法[J]. 西北工业大学学报202139(1): 175-181.
  LIU X H, LIU X X, ZHANG W G, et al. UAV attitude calculation algorithm based on acceleration correction model[J]. Journal of Northwestern Polytechnical University202139(1): 175-181 (in Chinese).
23 熊颖, 刘强, 韩邦成, 等. 基于微机电系统洛伦兹平台角速度估计[J]. 科学技术与工程202121(21): 8976-8982.
  XIONG Y, LIU Q, HAN B C, et al. Angular velocity estimation using micro-electro-mechanical system sensors with applications in Lorentz platform[J]. Science Technology and Engineering202121(21): 8976-8982 (in Chinese).
24 丁君. 基于微惯性传感器的姿态算法研究[D]. 上海: 上海交通大学, 2013.
  DING J. Research on attitude algorithm based on micro inertial sensors[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese).
25 崔培林, 周翟和, 吕品, 等. 自适应误差四元数无迹卡尔曼滤波四旋翼飞行器姿态解算方法[J]. 西安交通大学学报201953(3): 97-102, 110.
  CUI P L, ZHOU Z H, Lü P, et al. Adaptive error quaternion unscented Kalman filter algorithm for quadrotor attitude calculation[J]. Journal of Xi’an Jiaotong University201953(3): 97-102, 110 (in Chinese).
Outlines

/