Articles

Axial compression test and analysis method of composite stiffened plates with variable thickness

  • GAO Wei ,
  • LIU Cun ,
  • CHEN Shunqiang
Expand
  • AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2021-12-07

  Revised date: 2021-12-24

  Online published: 2022-04-06

Abstract

The axial compression buckling and post buckling characteristics of variable thickness composite stiffened plates are experimentally studied. The bearing capacity of the plate is calculated and analyzed by the engineering analysis method, eigenvalue buckling method, piecewise post buckling method and progressive damage failure method, and then the calculation results are compared with the test results. The results show that it is more reasonable to simplify the support of variable thickness composite stiffened plate stringer to fixed support than to simple support. The error between the calculated value and the experimental value is -13.9%. By introducing the concept of reduced width, the influence of the stiffness of the variable thickness region of the stiffened plate on the buckling characteristics of the skin can be effectively considered, and the accuracy of the engineering analysis method of the variable thickness stiffened plate can be further improved. The piecewise post buckling method and the simulation failure model considering the local effect and transverse stress component can accurately predict the post buckling capacity of variable thickness stiffened plates, with errors of 7.1% and 5.9%, respectively. The post buckling capacity is about 1.27 times of the initial buckling load, indicating that the variable thickness stiffened plate still has a certain post buckling capacity after buckling.

Cite this article

GAO Wei , LIU Cun , CHEN Shunqiang . Axial compression test and analysis method of composite stiffened plates with variable thickness[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526764 -526764 . DOI: 10.7527/S1000-6893.2022.26764

References

[1] 朱梅庄. 复合材料结构设计手册[M]. 北京:航空工业出版社, 2001. ZHU M Z. Handbook of composite structure design[M]. Beijing:Aviation Industry Press, 2001(in Chinese).
[2] 中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社, 2001. Chinese Aeronautical Establishment. Handbook of composite structure design[M]. Beijing:Aviation Industry Press, 2001(in Chinese).
[3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[4] 贾丽杰. 树脂基复合材料结构固化变形的研究进展[J]. 航空制造技术, 2011, 54(15):102-105. JIA L J. Advance in curing deformation of resin matrix composites structure[J]. Aeronautical Manufacturing Technology, 2011, 54(15):102-105(in Chinese).
[5] STEEN E. Elastic buckling and postbuckling of eccentrically stiffened plates[J]. International Journal of Solids and Structures, 1989, 25(7):751-768.
[6] ENGELSTAD S P, REDDY J N, KNIGHT N F. Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression[J]. AIAA Journal, 1992, 30(8):2106-2113.
[7] LEE I C, KIM C G, HONG C S. Buckling and postbuckling behavior of stiffened composite panels loaded in compression[J]. AIAA Journal, 1997, 35(1):202-204.
[8] ZIMMERMANN R, KLEIN H, KLING A. Buckling and postbuckling of stringer stiffened fibre composite curved panels-Tests and computations[J]. Composite Structures, 2006, 73(2):150-161.
[9] KONG C W, LEE I C, KIM C G, et al. Postbuckling and failure of stiffened composite panels under axial compression[J]. Composite Structures, 1998, 42(1):13-21.
[10] 李乐坤, 李曙林, 常飞, 等. 复合材料加筋壁板压缩屈曲与后屈曲分析[J]. 南京航空航天大学学报, 2016, 48(4):563-568. LI L K, LI S L, CHANG F, et al. Buckling and post-buckling of composite stiffened panel under compression[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4):563-568(in Chinese).
[11] 高志刚, 冯宇, 马斌麟, 等. 航空复合材料加筋板压缩屈曲及后屈曲力学性能[J]. 航空材料学报, 2020, 40(1):53-61. GAO Z G, FENG Y, MA B L, et al. Compressive bucking and post-bucking mechanical properties of aeronautic composite stiffened panel[J]. Journal of Aeronautical Materials, 2020, 40(1):53-61(in Chinese).
[12] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报, 2020, 37(6):1321-1333. SHI J W, ZHAO J, LIU C J, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica, 2020, 37(6):1321-1333(in Chinese).
[13] 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9):223688. LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):223688(in Chinese).
[14] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8):223987. WANG B W, AI S, ZHANG G F, et al. Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223987(in Chinese).
[15] 飞机设计手册编委会. 飞机设计手册(9)[M]. 北京:航空工业出版社, 2001:338-339. Aircraft Design Manual Editorial Board. Aircraft design manual (9)[M]. Beijing:Aviation Industry Press, 2001:338-339(in Chinese).
[16] 郑洁, 任善. 复合材料加筋壁板稳定性分析方法研究[J]. 航空科学技术, 2015, 26(3):44-48. ZHENG J, REN S. Study on stability analysis method of composite stiffened plates[J]. Aeronautical Science & Technology, 2015, 26(3):44-48(in Chinese).
[17] 穆朋刚, 万小朋, 赵美英. 复合材料加筋壁板稳定性分析研究[J]. 机械科学与技术, 2009, 28(9):1190-1193. MU P G, WAN X P, ZHAO M Y. A study of the stability of composite stiffened plates[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(9):1190-1193(in Chinese).
[18] 牛春匀. 实用飞机结构应力分析及尺寸设计[M]. 冯振宇,程小全,张纪奎, 译. 北京:航空工业出版社, 2009. NIU C Y. Airframe stress analysis and sizing[M]. FENG Z Y, CHENG X Q, ZHANG J K, translate. Beijing:Aviation Industry Press, 2009(in Chinese).
[19] 王菲菲, 崔德刚, 熊强, 等. 复合材料加筋板后屈曲承载能力工程分析方法[J]. 北京航空航天大学学报, 2013, 39(4):494-497. WANG F F, CUI D G, XIONG Q, et al. Engineering analysis of post-buckling loading capability for composite stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4):494-497(in Chinese).
[20] ORIFICI A C, SHAH S A, HERSZBERG I, et al. Failure analysis in postbuckled composite T-sections[J]. Composite Structures, 2008, 86(1-3):146-153.
[21] TURON A, DÁVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2007, 74(10):1665-1682.
[22] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2):329-334.
[23] SMITH M. ABAQUS/Standard user's manual, version 6.9[M]. Providence:Simulia, 2009.
[24] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4):439-449.
[25] LAPCZYK I, HURTADO J A. Progressive damage modeling in fiber-reinforced materials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11):2333-2341.
Outlines

/