Articles

Spacecraft positioning method based on pulsar-like X-ray beacon

  • Junqiu YIN ,
  • Yunpeng LIU ,
  • Xiaobin TANG
Expand
  • 1.Department of Nuclear Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics,Ministry of Industry and Information Technology,Nanjing  210016,China

Received date: 2021-11-02

  Revised date: 2021-11-22

  Accepted date: 2022-03-28

  Online published: 2022-04-06

Supported by

Foundation of the Graduate Innovation Center, Nanjing University of Aeronautics and Astronautics(xcxjh20210617)

Abstract

Inspired by the X-ray pulsar navigation technology, this study proposes a spacecraft positioning method based on pulsar-like X-ray beacons, which means that artificial beacons are used to imitate pulsars to send high stability and high signal-to-noise ratio X-ray signals, so as to provide positioning services for target spacecraft. Firstly, the positioning principle of the X-ray beacon based on the intersection of three spheres is introduced. On the basis of analyzing the influence of the signal coverage of the X-ray beacon and the gravitational perturbation of the celestial body, the scheme of arranging the X-ray beacon at the Lagrangian point in the orbit of the planets in the solar system is proposed. Secondly, the feasibility of artificial radiation sources is analyzed and demonstrated, and the parameters of radiation sources are preliminarily optimized based on the criteria of preferred pulsars and actual pulsar characteristics. Then, in view of the needs of Earth-Mars transfer trajectory in the future, an observation equation based on the X-ray beacon is constructed based on the spacecraft dynamics model, and the navigation filtering algorithm uses the extended Kalman filter method to study the influence of X-ray beacon geometry distribution, observation error, number of beacons, clock difference and orbital error on position determination accuracy. Simulation results show that under the condition of observing three beacons at the same time and the TOA measurement accuracy is 50 ns, the proposed method can achieve an optimal estimation accuracy of spacecraft position of 152 m, and most beacon combinations can control the positioning error within 1 km. Increasing the number of observation beacons has significantly improved the combination of beacons with lower positioning accuracy. However, due to the small inclination of the orbits between the planets in the solar system, the positioning error of the geothermal transfer orbiting spacecraft is still in the order of 100 m in simultaneous observation of 5 beacons. According to the actual needs of spacecraft in the field of deep space exploration, the positioning method proposed is expected to become an important supplement to the navigation positioning of spacecraft in deep space exploration.

Cite this article

Junqiu YIN , Yunpeng LIU , Xiaobin TANG . Spacecraft positioning method based on pulsar-like X-ray beacon[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526596 -526596 . DOI: 10.7527/S1000-6893.2022.26596

References

1 WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation201669(2): 414-432.
2 HAN X X, DU T X, PAN C, et al. Similar Hadamard-based compressive sensing and its application in pulsar TOA estimation[J]. Optik2019197: 163270.
3 BEI X M, SHUAI P, HANG L W, et al. Research on the pulsar optimizing method and the database construction[M]∥Lecture Notes in Electrical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 595-602.
4 RAO Y, KANG Z W, LIU J, et al. High-accuracy pulsar time delay estimation using an FrFT-based GCC[J]. Optik2019181: 611-618.
5 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报201637(4): 1305-1315.
  LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica201637(4): 1305-1315 (in Chinese).
6 NING X L, GUI M Z, FANG J C, et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology201762: 36-45.
7 LIU Y, HUANG J F, CAI S, et al. Electric simulation of silicon drift detector for single photon measurement[J]. Europhysics Letters2020130(5): 50006.
8 熊凯, 魏春岭, 李连升, 等. 基于扩维QLEKF的脉冲星/星间定向组合导航[J]. 航空学报202344(3): 526232.
  XIONG K, WEI C L, LI L S, et al. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF[J]. Acta Aeronautica et Astronautica Sinica202344(3): 526232 (in Chinese).
9 SUN J, GUO P B, WU T, et al. Pulsar/star tracker/INS integrated navigation method based on asynchronous observation model[J]. Journal of Aerospace Engineering201932(5): 4019075.
10 孙海峰, 邓忠文, 苏哲, 等. 空间射电望远镜的脉冲星自主导航性能分析[C]//第十二届中国卫星导航年会. 中国卫星导航系统管理办公室学术交流中心:中国卫星导航学术年会组委会,2021: 97-102.
  SUN H F, DENG Z W, SU Z, et al. Analysis of pulsar autonomous navigation performance of space radio telescopes[C]∥The 12th Annual Conference of China Satellite Navigation. Nanchang: 2021: 97-102 (in Chinese).
11 HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables199354(2): 181-342.
12 HU J G, WANG P, LU Y H, et al. Sub-diffraction-limit imaging in optical hyperlens[J]. Chinese Physics Letters200825(12): 4439-4441.
13 赵宝升, 苏桐, 盛立志. 空间X射线通信概论[M]. 北京: 科学出版社, 2016: 13.
  ZHAO B S, SU T, SHENG L Z. Introduction to space X-ray communication[M]. Beijing: Science Press, 2016: 13 (in Chinese).
14 DOWNS G S. Interplanetary navigation using pulsating radio sources[R]. Washington D. C.: NASA, 1974.
15 CHESTER T J, BUTMAN S A. Navigation using X-ray pulsars[R]. Washington D. C.: NASA, 1981.
16 赵士伟. 太阳系拉格朗日点研究与可视化表示[D]. 石家庄: 石家庄铁道大学, 2020: 72.
  ZHAO S W. The visualization Lagrange point in the solar-system[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020: 72 (in Chinese).
17 HILL K A. Autonomous navigation in libration point orbits[D]. Boulder: University of Colorado at Boulder, 2007.
18 赵露华, 费保俊, 杜健, 等. 基于X射线脉冲星的Halo轨道卫星自主导航和控轨[J]. 装甲兵工程学院学报201125(5): 94-97, 102.
  ZHAO L H, FEI B J, DU J, et al. Navigation and orbit control of satellites in halo orbits based on X-ray pulsars[J]. Journal of Academy of Armored Force Engineering201125(5): 94-97, 102 (in Chinese).
19 YANG C W, ZHENG J H, LI M T, et al. Integrated navigation based on pulsar in libration point orbit[C]∥Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2014: 83-87
20 GAO Y T, YOU Z C, LIU J Y, et al. The influence of orbital maneuver on autonomous orbit determination of an extended satellite navigation constellation[J]. Advances in Space Research202167(6): 1733-1742.
21 王大轶, 李茂登, 黄翔宇. 航天器多源信息融合自主导航技术[M]. 北京: 北京理工大学出版社, 2018: 168-169.
  WANG D Y, LI M D, HUANG X Y. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing: Beijing Insititute of Technology Press, 2018: 168-169 (in Chinese).
22 梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报201537(10): 2356-2362.
  LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology201537(10): 2356-2362 (in Chinese).
23 HANG S, LIU Y P, LI H, et al. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment2018887: 18-26.
24 HAMAMATSU. Light excited X-ray tube n5084 technical information[EB/OL]. [2021-08-31]. extension:∥bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https% 3A%2F%2Fseltokphotonics.com%2Fupload%2Fiblock%2Fa62%2Fa6244462da8bf8c33106fb3c9c30fb88.pdf.
25 FENG Z P, LIU Y P, MU J X, et al. Optimization and testing of groove-shaped grid-controlled modulated X-ray tube for X-ray communication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20221026: 166218.
26 王瑞荣, 安红海, 熊俊, 等. 准单色近平行光束的X射线源[J]. 物理学报201867(24): 240701.
  WANG R R, AN H H, XIONG J, et al. X-ray source with quasi-monochromatic parallel beam[J]. Acta Physica Sinica201867(24): 240701 (in Chinese).
27 BERNHARDT H, SCHMITT A T, GRABIGER B, et al. Ultra-high precision X-ray polarimetry with artificial diamond channel cuts at the beam divergence limit[J]. Physical Review Research20202(2): 023365.
28 WANG Y Y, LIU Y P, MU J X, et al. Collimating/focusing optical system designed for hard X-ray communication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20211016: 165776.
29 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 98.
  ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: theory and applications[M]. Beijing: Science Press, 2015: 98 (in Chinese).
30 MA Y T, LIU J B, ZHAO W X, et al. Researches on stability of microfocus electron-impact X-ray source[C]∥ SPIE Proceedings of 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials. Bellingham: SPIE, 20169685: 115-119.
31 ZHU X L, CHEN M, WENG S M, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances20206(22): eaaz7240.
Outlines

/