Study on aircraft attitude dynamics under random excitation

  • LI Haiquan ,
  • CHEN Xiaoqian ,
  • ZHANG Jiatu ,
  • WANG Liang
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. Shenyang Aircraft Design & Research Institute, Aviation Industry Corporation of China, Ltd., Shenyang 110035, China;
    3. National Innovation Institute of Defense Technology, PLA Academy of Military Sciences, Beijing 100071, China;
    4. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-01-07

  Revised date: 2021-01-15

  Online published: 2022-04-02

Supported by

National Natural Science Foundation of China (11972289)

Abstract

Without considering random factors, the simulation results are usually deviated from the real flight data to some extent in modeling and calculation of aircraft flight attitude dynamics. In this paper, based on statistical analysis of the actual flight data, a modeling method of flight attitude dynamics with random excitation is studied, and the flight dynamics of aircraft is simulated and analyzed by means of stochastic dynamics. The calculation results show that random factors have a significant impact on the flight attitude, and the stochastic response of the simulation model considering random factors can more accurately simulate the flight status of the aircraft in the real environment than the deterministic response, which provides a new idea for precise analysis of the flight attitude in the future.

Cite this article

LI Haiquan , CHEN Xiaoqian , ZHANG Jiatu , WANG Liang . Study on aircraft attitude dynamics under random excitation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 225232 -225232 . DOI: 10.7527/S1000-6893.2021.25232

References

[1] KINOSHITA T, IMADO F. The development of an UAV flight simulator and its application[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2007, 55(642):309-317.
[2] 陈小前, 姚雯, 欧阳琦. 飞行器不确定性多学科设计优化理论与应用[M]. 北京:科学出版社, 2013:1-3. CHEN X Q, YAO W, OUYANG Q. Theory and application of uncertainty-based multidisciplinary design optimization for flight vehicles[M]. Beijing:Science Press, 2013:1-3(in Chinese).
[3] ZHANG Y X, WANG W D. Mathematical analysis for stochastic model of Alzheimer's disease[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 89:105347.
[4] SLEPUKHINA E, RYASHKO L, KÜGLER P. Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model[J]. Chaos, Solitons & Fractals, 2020, 131:109515.
[5] SUN Y Z, LIN W. A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system[J]. Chaos An Interdisciplinary Journal of Nonlinea, 2015, 25(8):083118.
[6] 王亮, 徐伟, 李颖. 随机激励下二自由度碰撞振动系统的响应分析[J]. 物理学报, 2008, 57(10):6169-6173. WANG L, XU W, LI Y. Response analysis of two-degree-of-freedom impact oscillator to random excitation[J]. Acta Physica Sinica, 2008, 57(10):6169-6173(in Chinese).
[7] 王亮权, 徐国华, 史勇杰, 等. 高阶谐波控制对旋翼桨-涡干扰载荷和噪声的影响[J]. 航空学报, 2017, 38(7):520847. WANG L Q, XU G H, SHI Y J, et al. Influence of higher harmonic control on airload and acoustics of rotor blade-vortex interaction[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):520847(in Chinese).
[8] 赵耀, 熊智, 田世伟, 等. 基于SAR图像匹配结果可信度评价的INS/SAR自适应Kalman滤波算法[J]. 航空学报, 2019, 40(8):322850. ZHAO Y, XIONG Z, TIAN S W, et al. INS/SAR adaptive Kalman filtering algorithm based on credibility evaluation of SAR image matching results[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):322850(in Chinese).
[9] 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京:国防工业出版社, 1993:1-3. XIAO Y L, JIN C J. Flight principle in atmosphere turbulence[M]. Beijing:National Defense Industry Press, 1993:1-3(in Chinese).
[10] 詹浩, 张俐娜. 弹性飞机连续紊流时域响应评估方法[J]. 西北工业大学学报, 2013, 31(1):109-114. ZHAN H, ZHANG L N. A method for estimating time domain response of continuous turbulence of elastic aircraft[J]. Journal of Northwestern Polytechnical University, 2013, 31(1):109-114(in Chinese).
[11] ICHWANUL HAKIM T M, ARIFIANTO O. Implementation of Dryden continuous turbulence model into simulink for LSA-02 flight test simulation[J]. Journal of Physics:Conference Series, 2018, 1005:012017.
[12] 顾宁, 陆志良, 张家齐, 等. 基于CFD的机翼突风响应计算[J]. 航空学报, 2011, 32(5):785-791. GU N, LU Z L, ZHANG J Q, et al. CFD-based analysis for gust response of aircraft wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):785-791(in Chinese).
[13] 郭瑞雪, 白越. 多旋翼飞行器气动干扰研究综述[J]. 飞行力学, 2019, 37(5):7-11. GUO R X, BAI Y. Review of aerodynamic interference of multi-rotor aircraft[J]. Flight Dynamics, 2019, 37(5):7-11(in Chinese).
[14] 严德, 杨超, 肖志鹏. 弹性飞机平衡的阵风外载荷计算与分析[J]. 北京航空航天大学学报, 2012, 38(10):1321-1325. YAN D, YANG C, XIAO Z P. Balanced external gust loads computation and analysis for elastic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10):1321-1325(in Chinese).
[15] 王嘉. 几种典型机动动作的自动飞行仿真研究[D]. 西安:西北工业大学, 2007:6-10. WANG J. Study on automatic flight simulation of several typical maneuvers[D]. Xi'an:Northwestern Polytechnical University, 2007:6-10(in Chinese).
[16] 胡兆丰, 何植岱, 高浩. 飞行动力学:飞机的稳定性和操纵性[M]. 北京:国防工业出版社, 1985:21-29. HU Z F.HE Z D, GAO H. Flight dynamics-Stability and maneuverability of the aircraft[M]. Beijing:National Defense Industry Press, 1985:21-29(in Chinese).
[17] GHASSEMIAN R. Evaluation of flight simulation software development tools[D]. Montreal:Concordia University, 2002:10-15.
[18] STEVENS B L, LEWIS F L. Aircraft Control and Simulation[M]. Hoboken:Wiley-Interscience, 2003:111-115.
[19] YANG X D, LIU M, ZHANG W, et al. On the perturbation methods for vibration analysis of linear time-varying systems[J]. International Journal of Applied Mechanics, 2016, 8(3):1650035.
[20] MA S C, WANG L, NING X, et al. Probabilistic responses of three-dimensional stochastic vibro-impact systems[J]. Chaos, Solitons & Fractals, 2019, 126:308-314.
Outlines

/