Special Topic of Numerical Simulation of High Speed Vehicles in Near Space

Improved discrete velocity method based on unstructured mesh in velocity space and conservative correction

  • YANG Liming ,
  • WU Jie ,
  • DONG Hao ,
  • DU Yinjie
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2022-02-14

  Revised date: 2022-03-17

  Online published: 2022-03-30

Supported by

Natural Science Foundation of Jiangsu Province (BK20210273); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract

Conventional Discrete Velocity Method (DVM) only resolves the kinetic equation (i.e., Boltzmann-BGK equation) in each time step for fluid flow problem simulation in all flow regimes. Different from the conventional method, the Improved Discrete Velocity Method (IDVM) solves both the kinetic equation and the corresponding macroscopic governing equations so that the collisional effect at the cell interface can be involved in the calculation of numerical flux and the fully implicit discretization of the kinetic equation realized by the predicted results of macroscopic governing equations. These two improvements can effectively overcome the defects of low efficiency and poor accuracy of the conventional DVM in the continuum flow regime. To further reduce the number of discrete points in the velocity space and avoid the Runge phenomenon for numerical quadrature, the unstructured mesh combined with the rectangle rule is utilized to discretize the velocity space, and the conservative correction introduced to enforce the compatibility condition. Numerical results show that these strategies can significantly reduce the computational cost and memory consumption of the present method.

Cite this article

YANG Liming , WU Jie , DONG Hao , DU Yinjie . Improved discrete velocity method based on unstructured mesh in velocity space and conservative correction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(12) : 627033 -627033 . DOI: 10.7527/S1000-6893.2022.27033

References

[1] RANA A S, MOHAMMADZADEH A, STRUCHTRUP H. A numerical study of the heat transfer through a rarefied gas confined in a microcavity[J]. Continuum Mechanics and Thermodynamics, 2015, 27(3):433-446.
[2] 王卫东. 面向MEMS设计的微流体流动特性研究[D]. 西安:西安电子科技大学, 2007. WANG W D. Study on flow characteristics of microfluidics for MEMS design[D]. Xi'an:Xidian University, 2007(in Chinese).
[3] 樊菁. 稀薄气体动力学:进展与应用[J]. 力学进展, 2013, 43(2):185-201. FAN J. Rarefied gas dynamics:Advances and applications[J]. Advances in Mechanics, 2013, 43(2):185-201(in Chinese).
[4] 梁杰, 李志辉, 李齐, 等. 返回舱再入跨流域气动及配平特性数值研究[J]. 空气动力学学报, 2018, 36(5):848-855. LIANG J, LI Z H, LI Q, et al. Numerical simulation of aerodynamic and trim characteristics across different flow regimes for reentry module[J]. Acta Aerodynamica Sinica, 2018, 36(5):848-855(in Chinese).
[5] 李锦, 耿湘人, 陈坚强, 等. DSMC量子动理学模型在火星再入流动中的应用[J]. 航空学报, 2020, 41(7):123240. LI J, GENG X R, CHEN J Q, et al. Application of DSMC quantum kinetic model in re-entry flow of Mars[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):123240(in Chinese).
[6] BROADWELL J E. Study of rarefied shear flow by the discrete velocity method[J]. Journal of Fluid Mechanics, 1964, 19(3):401-414.
[7] YANG L M, SHU C, WU J, et al. Comparative study of discrete velocity method and high-order lattice Boltzmann method for simulation of rarefied flows[J]. Computers & Fluids, 2017, 146:125-142.
[8] YANG J Y, HUANG J C. Rarefied flow computations using nonlinear model Boltzmann equations[J]. Journal of Computational Physics, 1995, 120(2):323-339.
[9] MIEUSSENS L. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models[J]. Journal of Computational Physics, 2013, 253:138-156.
[10] WANG P, HO M T, WU L, et al. A comparative study of discrete velocity methods for low-speed rarefied gas flows[J]. Computers & Fluids, 2018, 161:33-46.
[11] KUDRYAVTSEV A N, SHERSHNEV A A. A numerical method for simulation of microflows by solving directly kinetic equations with WENO schemes[J]. Journal of Scientific Computing, 2013, 57(1):42-73.
[12] DIAZ M A, CHEN M H, YANG J Y. High-order conservative asymptotic-preserving schemes for modeling rarefied gas dynamical flows with Boltzmann-BGK equation[J]. Communications in Computational Physics, 2015, 18(4):1012-1049.
[13] MIEUSSENS L. Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics[J]. Mathematical Models and Methods in Applied Sciences, 2000, 10(8):1121-1149.
[14] YANG L M, SHU C, YANG W M, et al. An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes[J]. Physics of Fluids, 2018, 30(6):062005.
[15] 李志辉, 彭傲平, 方方, 等. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究[J]. 物理学报, 2015, 64(22):224703. LI Z H, PENG A P, FANG F, et al. Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation[J]. Acta Physica Sinica, 2015, 64(22):224703(in Chinese).
[16] 李志辉, 彭傲平, 马强, 等. 大型航天器离轨再入气动融合结构变形失效解体落区数值预报与应用[J]. 载人航天, 2020, 26(4):403-417. LI Z H, PENG A P, MA Q, et al. Study and application of deformation failure disintegration algorithm for large-scale spacecraft reentry aerodynamic coupling structure[J]. Manned Spaceflight, 2020, 26(4):403-417(in Chinese).
[17] LI Z H, HU W Q, PENG A P, et al. Gas-kinetic unified algorithm for plane external force-driven flows covering all flow regimes by modeling of Boltzmann equation[J]. International Journal for Numerical Methods in Fluids, 2020, 92(8):922-949.
[18] XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764.
[19] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4):1-13. LIU S, WANG Y, YUAN R F, et al. Advance in unified methods based on gas-kinetic theory[J]. Physics of Gases, 2019, 4(4):1-13(in Chinese).
[20] 张华波, 周瑞睿, 李思达, 等. 基于气体动理学方法的多尺度稳态热辐射计算[J]. 航空学报, 2021, 42(S1):726411. ZHANG H B, ZHOU R D, LI S D, et al. Multiscale steady-state thermal radiation calculation based on gas kinetics method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1):726411(in Chinese).
[21] GUO Z L, XU K, WANG R J. Discrete unified gas kinetic scheme for all Knudsen number flows:Low-speed isothermal case[J]. Physical Review E, 2013, 88(3):033305.
[22] 姚博, 张创, 郭照立. 考虑分子转动自由度的离散统一气体动理学格式[J]. 航空学报, 2019, 40(7):122914. YAO B, ZHANG C, GUO Z L. Discrete unified gas kinetic scheme for diatomic gas with rotational degrees of freedom[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122914(in Chinese).
[23] YANG L M, SHU C, YANG W M, et al. An improved three-dimensional implicit discrete velocity method on unstructured meshes for all Knudsen number flows[J]. Journal of Computational Physics, 2019, 396:738-760.
[24] YANG L M, ZHAO X, SHU C, et al. Parametric reduced order modeling-based discrete velocity method for simulation of steady rarefied flows[J]. Journal of Computational Physics, 2021, 430:110037.
[25] CHEN S Z, GUO Z L, XU K. Simplification of the unified gas kinetic scheme[J]. Physical Review E, 2016, 94(2-1):023313.
[26] 皮兴才, 朱炼华, 李志辉, 等. 基于宏观方程数值本构关系的气体动理论加速收敛方法[J]. 物理学报, 2020, 69(20):287-298. PI X C, ZHU L H, LI Z H, et al. Method of accelerating convergence for gas kinetic algorithm based on digital constitutive relation of macroscopic equations[J]. Acta Physica Sinica, 2020, 69(20):287-298(in Chinese).
[27] FORNBERG B, ZUEV J. The Runge phenomenon and spatially variable shape parameters in RBF interpolation[J]. Computers & Mathematics With Applications, 2007, 54(3):379-398.
[28] SHAKHOV E M. Generalization of the Krook kinetic relaxation equation[J]. Fluid Dynamics, 1972, 3(5):95-96.
[29] YANG L, WANG Y, CHEN Z, et al. Lattice Boltzmann and gas kinetic flux solvers:Theory and applications[M]. Hackensack:World Scientific Publishing Co. Pte. Ltd., 2020.
[30] YUAN R F, ZHONG C W. A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes[J]. Computer Physics Communications, 2020, 247:106972.
[31] CHEN J F, LIU S, WANG Y, et al. Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space[J]. Physical Review E, 2019, 100(4-1):043305.
[32] TITAREV V A. Implicit high-order method for calculating rarefied gas flow in a planar microchannel[J]. Journal of Computational Physics, 2012, 231(1):109-134.
[33] YANG L M, SHU C, YANG W M, et al. Numerical investigation on performance of three solution reconstructions at cell interface in DVM simulation of flows in all Knudsen number regimes[J]. International Journal for Numerical Methods in Fluids, 2019, 90(11):545-563.
[34] GHIA U, GHIA K N, SHIN C T. High-Re solutions for imcompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics, 1982, 48(3):387-411.
[35] HUANG J C,XU K,YU P B.A unified gas-kinetic scheme for continuum and rarefield flows Ⅱ:Multi-dimensional cases[J]. Communications in Computational Physics, 2012,12(3):662-690.
[36] JIANG D W, MAO M L, LI J, et al. An implicit parallel UGKS solver for flows covering various regimes[J]. Advances in Aerodynamics, 2019, 1(1):8.
[37] LI Z H, ZHANG H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics, 2009, 228(4):1116-1138.
Outlines

/