Electronics and Electrical Engineering and Control

A moving target detector with coherent integration of Bayesian-inferred motion trajectories

  • Wenbin YANG ,
  • Yuebin WANG ,
  • Dan LI ,
  • Jianqiu ZHANG
Expand
  • 1.Key Laboratory of EMW Information,Shanghai 200433,China
    2.Department of Electronic Engineering,School of Information Science and Technology,Fudan University,Shanghai 200433,China
E-mail: lidan@fudan.edu.cn

Received date: 2021-12-16

  Revised date: 2021-12-30

  Accepted date: 2022-03-21

  Online published: 2022-03-30

Supported by

National Natural Science Foundation of China(11974082)

Abstract

It has been shown theoretically and practically that coherent integration is an effective method for moving target detection. Unfortunately, its performance is seriously damaged by the unknown range and/or Doppler frequency migrations in a coherent processing interval. To handle such a problem, a moving target detector with the coherent integration of Bayesian-inferred motion trajectories is proposed in this paper. Analyses show that by flipping the range-frequency of the pulse compressed echo signal, the time-frequency signal describing the motion trajectories of the detected targets in the slow-time domain is got by the inverse Fourier transform of the product of the original echo signal and the flipped one. When the time-frequency signal is observed and its phases describing the detected moving target trajectories are regarded as state variables, a state space model for inferring the motion trajectories of multiple targets is given. Based on the inferred target trajectories, the range-frequency-slow-time 2D matched filters are constructed to compensate the unknown range and/or Doppler frequency migrations in an echo signal. Numerical simulation results verify that the proposed method can be applied to high speed/maneuvering targets with unknown complex motion form, and has superior performance than the methods reported in the literature.

Cite this article

Wenbin YANG , Yuebin WANG , Dan LI , Jianqiu ZHANG . A moving target detector with coherent integration of Bayesian-inferred motion trajectories[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 326823 -326823 . DOI: 10.7527/S1000-6893.2022.26823

References

1 O’DONNELL R M. Introduction to radar systems[D]. Cambridge: Massachusetts Institute of Technology, 2007.
2 KONG L J, LI X L, CUI G L, et al. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing201563( 17): 4474- 4486.
3 RICHARDS M A. The keystone transformation for correcting range migration in range-Doppler processing[C]∥ IEEE Radar Conference. Piscataway: IEEE Press, 2014: 1– 29.
4 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理202036( 12): 1947- 1964.
  CHEN X L, HUANG Y, GUAN J, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing202036( 12): 1947- 1964 (in Chinese).
5 LI X L, CUI G L, KONG L J, et al. Fast non-searching method for maneuvering target detection and motion parameters estimation[J]. IEEE Transactions on Signal Processing201664( 9): 2232- 2244.
6 XU J, YU J, PENG Y N, et al. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems201147( 2): 1186- 1202.
7 YU W C, SU W M, GU H. Ground moving target motion parameter estimation using Radon modified Lv’s distribution[J]. Digital Signal Processing201769: 212- 223.
8 PERRY R P, DIPIETRO R C, FANTE R L. Coherent integration with range migration using keystone formatting[C]∥ 2007 IEEE Radar Conference. Piscataway: IEEE Press, 2007: 863- 868.
9 XU J, XIA X G, PENG S B, et al. Radar maneuvering target motion estimation based on generalized radon-Fourier transform[J]. IEEE Transactions on Signal Processing201260( 12): 6190- 6201.
10 YU W C, SU W M, GU H, et al. Weak maneuvering target detection in random pulse repetition interval radar[J]. Signal Processing2020171: 107520.
11 LI H, MA D, WU R B. A low complexity algorithm for across range unit effect correction of the moving target via range frequency polynomial-phase transform[J]. Digital Signal Processing201762: 176- 186.
12 CHEN X L, GUAN J, ZHENG J B, et al. Non-parametric searching sparse long-time coherent integration method for highly maneuverable target of MIMO radar[C]∥ 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). Piscataway: IEEE Press, 2021: 398- 403.
13 SUN Z, LI X L, YI W, et al. Detection of weak maneuvering target based on keystone transform and matched filtering process[J]. Signal Processing2017140: 127- 138.
14 王悦斌, 蒋景飞, 张建秋. 动态出现和/或消失时频信号的模型和分析[J]. 电子学报201947( 2): 495- 501.
  WANG Y B, JIANG J F, ZHANG J Q. A time-frequency model and analytical method for multiple modulated components with dynamic births and deaths[J]. Acta Electronica Sinica201947( 2): 495- 501 (in Chinese).
15 高羽, 张建秋, 尹建君. 机动目标的多项式预测模型及其跟踪算法[J]. 航空学报200930( 8): 1479- 1489.
  GAO Y, ZHANG J Q, YIN J J. Polynomial prediction model and tracking algorithm of maneuver target[J]. Acta Aeronautica et Astronautica Sinica200930( 8): 1479- 1489 (in Chinese).
16 HEINONEN P, NEUVO Y. FIR-Median hybrid filters with predictive FIR substructures[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing198836( 6): 892- 899.
17 S?RKK? S. Bayesian filtering and smoothing: Particle filtering[M]. Cambridge: Cambridge University Press, 2013.
18 STOICA P, ZACHARIAH D, LI J. Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation[J]. Digital Signal Processing201433: 1- 12.
19 RADOI E, QUINQUIS A. A new method for estimating the number of harmonic components in noise with application in high resolution radar[J]. EURASIP Journal on Advances in Signal Processing20042004( 8): 615890.
20 XU J, YU J, PENG Y N, et al. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems201147( 4): 2473- 2489.
21 张召友, 郝燕玲, 吴旭. 3种确定性采样非线性滤波算法的复杂度分析[J]. 哈尔滨工业大学学报201345( 12): 111- 115.
  ZHANG Z Y, HAO Y L, WU X. Complexity analysis of three deterministic sampling nonlinear filtering algorithms[J]. Journal of Harbin Institute of Technology201345( 12): 111- 115 (in Chinese).
22 DJUROVI? I, SIMEUNOVI? M. Review of the quasi-maximum likelihood estimator for polynomial phase signals[J]. Digital Signal Processing201872: 59- 74.
23 CAREVIC D, DAVEY S. Two algorithms for modeling and tracking of dynamic time-frequency spectra[J]. IEEE Transactions on Signal Processing201664( 22): 6030- 6045.
24 XU J, ZHOU X, QIAN L C, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems201652( 5): 2554- 2561.
25 YANG Z, XIE L H. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing201563( 12): 3139- 3153.
26 NGUYEN T H, LOUVEAUX J, DE DONCKER P, et al. Performance analysis of matched-filter precoded MISO-OFDM systems in the presence of imperfect CSI[C]∥ 2020 IEEE 91st Vehicular Technology Conference. Piscataway: IEEE Press, 2020: 1- 5.
Outlines

/