Articles

Stall separation optimization and analysis of middle wing section on specially configured laminar flight

  • TANG Songxiang ,
  • LI Jie ,
  • ZHANG Heng ,
  • NIU Xiaotian
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-12-07

  Revised date: 2022-02-25

  Online published: 2022-03-30

Supported by

National Natural Science Foundation of China (11972304)

Abstract

The stall separation of the middle wing section on a specially configured laminar flight, the airfoil of the middle wing section was analyzed and optimized based on the Reynolds-Averaged Navier-Stokes (RANS) method. The standard k-ω Shear Stress Transport (SST) turbulence model and the γ-Reθ transition model were adopted to calculate the flow field of an Aerospatiale A-airfoil to verify the accuracy of both the numerical method and the grid topology at low speed. To verify the model accuracy of the laminar middle wing section configuration at high speed, the flow field of a traditional airfoil was calculated, and the result compared with those of the wind tunnel test under the same condition. Finally, the airfoil profile was optimized for the stall separation of the laminar middle wing section. The result showed that the modified airfoil could retard the development of the separation bubble at the leading edge, and the starting of separation was delayed from the angle of attack 8° to 12°. Furthermore, the modified wing section effectively maintained the distribution of the pressure coefficient under the high speed cruising condition with a better aerodynamic characteristic compared with the original one.

Cite this article

TANG Songxiang , LI Jie , ZHANG Heng , NIU Xiaotian . Stall separation optimization and analysis of middle wing section on specially configured laminar flight[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526765 -526765 . DOI: 10.7527/S1000-6893.2022.26765

References

[1] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese).
[2] 温杰. 连载:兰利研究中心的创新历程(之五)层流控制技术的应用研究[J]. 国际航空, 2007(5):56-59. WEN J. Laminar Flow Control in NASA Langley Research Center (Part five)[J]. International Aviation, 2007(5):56-59(in Chinese).
[3] BRASLOW A L. A history of suction-type laminar-flow control with emphasis on flight research[M]. Washington, D.C.:NASA, 1999.
[4] ZHANG X Y. A review of the attachment line instability for hybrid laminar flow control[J]. Civil Aircraft Design & Research, 2017(4):42-51.
[5] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524, 540. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524, 540(in Chinese).
[6] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[7] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52.
[8] 李悦立, 李栋, 杨永. 后掠翼被动层流控制研究[J]. 力学学报, 2011, 43(1):45-54. LI Y L, LI D, YANG Y. On the passive laminar flow control technique of swept wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):45-54(in Chinese).
[9] CHERNYSHEV S L, GAMIRULLIN M D, KHOMICH V Y, et al. Electrogasdynamic laminar flow control on a swept wing[J]. Aerospace Science and Technology, 2016, 59:155-161.
[10] LI F, CHOUDHARI M, CHANG C L, et al. Computational modeling of roughness-based laminar flow control on a subsonic swept wing[J]. AIAA Journal, 2011, 49(3):520-529.
[11] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[12] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J]. Aerospace Science and Technology, 2018, 80:221-231.
[13] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese).
[14] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[16] 许朕铭, 韩忠华, 陈静, 等. 适用于中程民机的前掠自然层流机翼设计[J]. 西北工业大学学报, 2017, 35(S1):36-42. XU Z M, HAN Z H, CHEN J, et al. Design research of forward swept natural laminar flow wing suitable for medium range civil[J]. Journal of Northwestern Polytechnical University, 2017, 35(S1):36-42(in Chinese).
[17] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413.
[18] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part II:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[19] QIAO L, BAI J Q, HUA J, et al. Combination of DES and DDES with a correlation based transition model[J]. Applied Mechanics and Materials, 2013, 444-445:374-379.
[20] ZHOU L, GAO Z H, DU Y M. Flow-dependent DDES/γ-Reθt coupling model for the simulation of separated transitional flow[J]. Aerospace Scienceand Technology, 2019, 87:389-403.
[21] 易淼荣, 赵慧勇, 乐嘉陵. 基于IDDES方法和γ-Reθ转捩模型的粗糙颗粒诱导高速边界层强制转捩模拟[J]. 推进技术, 2020, 41(4):778-790. YI M R, ZHAO H Y, LE J L. Roughness induced high speed boundary layer forced transition simulation using γ-Reθ transition model based on IDDES method[J]. Journal of Propulsion Technology, 2020, 41(4):778-790(in Chinese).
[22] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的γ-Reθ转捩模型[J]. 航空学报, 2019, 40(8):122726. YI M R, ZHAO H Y, LE J L, et al.γ-Reθ transition mod-el based on IDDES frame[J]. Acta Aeronautica et Astro-nautica Sinica, 2019, 40(8):122726(in Chinese).
[23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[24] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[25] MELLEN C P, FROHLICH J, RODI W. Lessons from LESFOIL project on large-eddy simulation of flow around an airfoil[J]. AIAA Journal, 2003, 41(4):573-581.
Outlines

/