ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels
Received date: 2021-11-24
Revised date: 2021-12-10
Accepted date: 2022-03-23
Online published: 2022-03-30
Supported by
National Natural Science Foundation of China(51776013)
Adding energetic solid particles, such as aluminum and boron, into liquid hydrocarbon fuel is an effective approach to improve the energy characteristics of the fuel, and it is also an important technological base in improving the performance of rocket engine and ramjet in the future. In this paper, the development and current demand of energetic hydrocarbon fuels are introduced, and two types of energy-containing hydrocarbon fuels and their respective advantages are analyzed and compared. Besides, the single droplet combustion experiments of hydrocarbon fuel containing solid particles at home and abroad are reviewed. The characteristic combustion process and typical combustion phenomena of energy-containing hydrocarbon fuel droplets are introduced. In addition, the application progress of energetic hydrocarbon fuels in rocket engine, ramjet and scramjet are summarized. Finally, the future research of hydrocarbon fuels containing solid particles is prospected.
Yushu JIN , Xu XU , Qingchun YANG . Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(5) : 26690 -026690 . DOI: 10.7527/S1000-6893.2022.26690
1 | ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125. |
2 | 邹吉军, 郭成, 张香文, 等. 航天推进用高密度液体碳氢燃料: 合成与应用[J]. 推进技术, 2014, 35(10): 1419-1425. |
ZOU J J, GUO C, ZHANG X W, et al. High-density liquid hydrocarbon fuels for aerospace propulsion: Synthesis and application[J]. Journal of Propulsion Technology, 2014, 35(10): 1419-1425 (in Chinese). | |
3 | ROY G D. Utilization of high-density strained hydrocarbon fuels for propulsion[J]. Journal of Propulsion and Power, 2000, 16(4): 546-551. |
4 | KOKAN T S, OLDS J R, SEITZMAN J M, et al. Characterizing high-energy-density propellants for space propulsion applications[J]. Acta Astronautica, 2009, 65(7-8): 967-986. |
5 | KOKAN T, OLDS J. An experimental and analytical study of high-energy-density propellants for liquid rocket engines[C]∥ 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005. |
6 | 邹吉军, 张香文, 王莅, 等. 高密度烃燃料合成进展[J]. 化学推进剂与高分子材料, 2008, 6(1): 26-30. |
ZOU J J, ZHANG X W, WANG L, et al. Synthesis advance of high-density hydrocarbon fuels[J]. Chemical Propellants & Polymeric Materials, 2008, 6(1): 26-30 (in Chinese). | |
7 | WOHLWEND K, MAURICE L Q, EDWARDS T, et al. Thermal stability of energetic hydrocarbon fuels for use in combined cycle engines[J]. Journal of Propulsion and Power, 2001, 17(6): 1258-1262. |
8 | 潘伦, 鄂秀天凤, 邹吉军, 等. 四环庚烷的制备及自燃性[J]. 含能材料, 2015, 23(10): 959-963. |
PAN L, E X T F, ZOU J J, et al. Study on synthesis of quadricyclane and its hypergolic property[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 959-963 (in Chinese). | |
9 | 王文涛, 丛昱, 王晓东, 等. 四环庚烷的合成[J]. 含能材料, 2014, 22(2): 141-143. |
WANG W T, CONG Y, WANG X D, et al. Synthesis of quadricyclane[J]. Chinese Journal of Energetic Materials, 2014, 22(2): 141-143 (in Chinese). | |
10 | 李艳玲, 冀克俭, 赵晓刚, 等. 高张力笼状化合物四环庚烷的分子结构表征及热裂解[J]. 含能材料, 2017, 25(8): 622-626. |
LI Y L, JI K J, ZHAO X G, et al. Molecular structure characterization and pyrolysis of high strain and caged structure compound-quadricyclane[J]. Chinese Journal of Energetic Materials, 2017, 25(8): 622-626 (in Chinese). | |
11 | 王磊, 张香文, 邹吉军, 等. 密度大于1的高密度液体碳氢燃料合成及复配研究[J]. 含能材料, 2009, 17(2): 157-160, 201. |
WANG L, ZHANG X W, ZOU J J, et al. Synthesis and blending of high-density hydrocarbon fuels with density beyond 1.0 g?cm-3 [J]. Chinese Journal of Energetic Materials, 2009, 17(2): 157-160, 201 (in Chinese). | |
12 | MEHTA R N, CHAKRABORTY M, PARIKH P A. Nanofuels: Combustion, engine performance and emissions[J]. Fuel, 2014, 120: 91-97. |
13 | OJHA P K, KARMAKAR S. Boron for liquid fuel engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects[J]. Progress in Aerospace Sciences, 2018, 100: 18-45. |
14 | ZOU J J, ZHANG X W, PAN L. High-energy-density fuels for advanced propulsion[M]. Hoboken: John Wiley & Sons, Ltd, 2020. |
15 | 邹吉军. 对提高液体燃料能量密度的思考[J]. 含能材料, 2020, 28(5): 366-368, 355. |
ZOU J J. Thoughts on improving the energy density of liquid fuels[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 366-368, 355 (in Chinese). | |
16 | NIE J R, JIA T H, PAN L, et al. Development of high-energy-density liquid aerospace fuel: A perspective[J]. Transactions of Tianjin University, 2022, 28(1): 1-5. |
17 | 熊中强, 米镇涛, 张香文, 等. 合成高密度烃类燃料研究进展[J]. 化学进展, 2005, 17(2): 359-367. |
XIONG Z Q, MI Z T, ZHANG X W, et al. Development of synthesized high-density hydrocarbon fuels[J]. Progress in Chemistry, 2005, 17(2): 359-367 (in Chinese). | |
18 | 邹吉军, 张香文, 王莅, 等. 高密度液体碳氢燃料合成及应用进展[J]. 含能材料, 2007, 15(4): 411-415. |
ZOU J J, ZHANG X W, WANG L, et al. Progress on the synthesis and application of high-density liquid hydrocarbon fuels[J]. Chinese Journal of Energetic Materials, 2007, 15(4): 411-415 (in Chinese). | |
19 | 焦燕, 冯利利, 朱岳麟, 等. 美国军用喷气燃料发展综述[J]. 火箭推进, 2008, 34(1): 30-35. |
JIAO Y, FENG L L, ZHU Y L, et al. Review of American military jet fuels development[J]. Journal of Rocket Propulsion, 2008, 34(1): 30-35 (in Chinese). | |
20 | SCHNEIDER A, WARE R E, JANOSKI E J. Isomerization of endo-tetrahydrodicyclopentadiene to a missile fuel diluent: US04086284A[P]. 1978-04-25. |
21 | 潘伦, 邓强, 鄂秀天凤, 等. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541. |
PAN L, DENG Q, E X T F, et al. Synthesis chemistry of high-density fuels for aviation and aerospace propulsion[J]. Progress in Chemistry, 2015, 27(11): 1531-1541 (in Chinese). | |
22 | ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. |
23 | LIU L J, QI Z. Comparison of detonation characteristics in energy output of gaseous JP-10 and propylene oxide in air[J]. Fuel, 2018, 232: 154-164. |
24 | 张香文, 米镇涛, 周震寰, 等. 高能量密度燃料HDF-1与金属材料的相容性[J]. 推进技术, 2002, 23(2): 161-163. |
ZHANG X W, MI Z T, ZHOU Z H, et al. Compatibility of high energy density fuel (HDF-1) and metal material[J]. Journal of Propulsion Technology, 2002, 23(2): 161-163 (in Chinese). | |
25 | 古玲, 张香文, 米镇涛. 高密度燃料HDF-1中过氧化物生成的研究[J]. 化学推进剂与高分子材料, 2005, 3(4): 29-32. |
GU L, ZHANG X W, MI Z T. Study on the formation of peroxide in high-density fuel HDF-1[J]. Chemical Propellants & Polymeric Materials, 2005, 3(4): 29-32 (in Chinese). | |
26 | 张香文, 董飞, 周震寰, 等. 高密度燃料HDF-1与橡胶的相容性研究[J]. 燃料化学学报, 2003, 31(4): 342-348. |
ZHANG X W, DONG F, ZHOU Z H, et al. Study on compatibility of high-density fuel HDF-1 with rubbers[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 342-348 (in Chinese). | |
27 | PAN L, FENG R, PENG H, et al. A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel[J]. RSC Advances, 2014, 4(92): 50998-51001. |
28 | PAN L, ZOU J J, ZHANG X W, et al. Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2 [J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8526-8531. |
29 | ZOU J J, LIU Y, PAN L, et al. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41[J]. Applied Catalysis B: Environmental, 2010, 95(3-4): 439-445. |
30 | ZOU J J, ZHU B, WANG L,et al. Zn- and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane[J]. Journal of Molecular Catalysis A: Chemical, 2008, 286(1-2): 63-69. |
31 | ZHANG X W, JIANG Q, XIONG Z Q, et al. Diels-alder addition of dicyclopentadiene with cyclopentadiene in polar solvents[J]. Chemical Research in Chinese Universities, 2008, 24(2): 175-179. |
32 | WANG L, ZHANG X W, ZOU J J, et al. Acid-catalyzed isomerization of tetrahydrotricyclopentadiene: Synthesis of high-energy-density liquid fuel[J]. Energy & Fuels, 2009, 23(5): 2383-2388. |
33 | E X T F, ZHI X M, ZHANG Y M, et al. Jet fuel containing ligand-protecting energetic nanoparticles: A case study of boron in JP-10[J]. Chemical Engineering Science, 2015, 129: 9-13. |
34 | E X T F, PAN L, WANG F, et al. Al-nanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738-2745. |
35 | GORDON L J, LEE J B. Metals as fuels in multicomponent propellants[J]. ARS Journal, 1962, 32(4): 600-606. |
36 | ZURAWSKI R, GREEN J. An evaluation of metallized propellants based on vehicle performance[C]∥ 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
37 | RAPP D, ZURAWSKI R. Characterization of aluminum/RP-1 gel propellant properties[C]∥ 24th Joint Propulsion Conference. Reston: AIAA, 1988. |
38 | RAPP D. High energy-density liquid rocket fuel performance[C]∥ 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
39 | PALASZEWSKI B, POWELL R. Launch vehicle performance using metallized propellants[J]. Journal of Propulsion and Power, 1994, 10(6): 828-833. |
40 | PALASZEWSKI B, RAPP D. Design issues for propulsion systems using metallized propellants[C]∥ Conference on Advanced SEI Technologies. Reston: AIAA, 1991. |
41 | PALASZEWSKI B. Metallized propellants for the human exploration of Mars[J]. Journal of Propulsion and Power, 1992, 8(6): 1192-1199. |
42 | PALASZEWSKI B. Lunar missions using advanced chemical propulsion─System design issues[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 458-465. |
43 | GEDANKEN A. Using sonochemistry for the fabrication of nanomaterials[J]. Ultrasonics Sonochemistry, 2004, 11(2): 47-55. |
44 | GAN Y N, QIAO L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J]. Combustion and Flame, 2011, 158(2): 354-368. |
45 | LI Z Q, FU C, GAN Y, et al. Investigation on spray and combustion characteristics of boron/ethanol nanofuel utilizing 50 kHz repetition rate high-speed laser measurements[J]. Fuel, 2021, 287: 119562. |
46 | 鄂秀天凤, 彭浩, 邹吉军, 等. 含有纳米铝颗粒的高密度悬浮燃料研究[J]. 推进技术, 2016, 37(5): 974-978. |
E X T F, PENG H, ZOU J J, et al. Study on Al NPs-containing suspension as high-density liquid fuel[J]. Journal of Propulsion Technology, 2016, 37(5): 974-978 (in Chinese). | |
47 | 裴慧霞, 鄂秀天凤, 张磊, 等. 添加高能纳米硼颗粒的高密度液体碳氢燃料研究[J]. 现代化工, 2017, 37(1): 111-114. |
PEI H X, E X T F, ZHANG L, et al. Study on high-density liquid fuel containing energetic nanoparticles[J]. Modern Chemical Industry, 2017, 37(1): 111-114 (in Chinese). | |
48 | 伍婷婷, 刘建忠, 陈冰虹, 等. 纳米流体燃料稳定性及金属颗粒改性方法研究进展[J]. 推进技术, 2020, 41(3): 481-492. |
WU T T, LIU J Z, CHEN B H, et al. Research progress on nanofluid fuels stability and metal particle modification methods[J]. Journal of Propulsion Technology, 2020, 41(3): 481-492 (in Chinese). | |
49 | 李辰芳. 包覆硼粒子提高硼的燃烧效率[J]. 推进技术, 1994, 15(2): 53-57. |
LI C F. Coating boron particles to increase the combustion efficiency of boron fuel[J]. Journal of Propulsion Technology, 1994, 15(2): 53-57 (in Chinese). | |
50 | 鄂秀天凤. 基于亲油性纳米颗粒的高密度悬浮燃料研究[D]. 天津: 天津大学, 2015. |
E X T F. High-density suspension fuels containing oil-dispersable nanoparticles[D]. Tianjin: Tianjin University, 2015 (in Chinese). | |
51 | JAVED I, BAED S W, WAHEED K, et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(12): 2955-2963. |
52 | E X T F, ZHANG L, WANG F, et al. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 358-366. |
53 | MATHE V L, VARMA V, RAUT S, et al. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route[J]. Applied Surface Science, 2016, 368: 16-26. |
54 | 陈世武. 凝胶推进剂的由来与发展[J]. 火炸药, 1996(1): 47-52, 25. |
CHEN S W. Source and development of gel propellant[J]. Explosives & Propellents, 1996(1): 47-52, 25 (in Chinese). | |
55 | 闫大庆, 周宏民, 单建胜. 凝胶/膏状推进剂研究发展状况[J]. 火箭推进, 2003, 29(1): 38-46, 29. |
YAN D Q, ZHOU H M, SHAN J S. Research and development status of gel/paste propellant[J]. Journal of Rocket Propulsion, 2003, 29(1): 38-46, 29 (in Chinese). | |
56 | TEPPER F, KALEDIN L A. Combustion characteristics of kerosene containing Alex? nano-aluminum[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 195-205. |
57 | 夏益志, 王勇, 洪流, 等. 凝胶自燃推进剂着火及火焰试验[J]. 航空学报, 2020, 41(1): 123254. |
XIA Y Z, WANG Y, HONG L, et al. Experiment on ignition and flame of gelled hypergolic bipropellants[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123254 (in Chinese). | |
58 | MUELLER D C, TURNS S R. Theoretical effects of aluminum gel propellant secondary atomization on rocket engine performance[J]. Journal of Propulsion and Power, 1996, 12(3): 591-597. |
59 | 陈志刚, 杨荣杰. 金属化凝胶推进剂的性能评估[J]. 推进技术, 1998, 19(1): 102-106. |
CHEN Z G, YANG R J. Evaluation on performance of metallized gelled propellant[J]. Journal of Propulsion Technology, 1998, 19(1): 102-106 (in Chinese). | |
60 | PADWAL M B, NATAN B, MISHRA D P. Gel propellants[J]. Progress in Energy and Combustion Science, 2021, 83: 100885. |
61 | 曹锦文, 潘伦, 张香文, 等. 含纳米铝颗粒的JP-10凝胶燃料理化及流变性能[J]. 含能材料, 2020, 28(5): 382-390. |
CAO J W, PAN L, ZHANG X W, et al. Physicochemical and rheological properties of Al/JP-10 gelled fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 382-390 (in Chinese). | |
62 | 鄂秀天凤, 潘伦, 张香文, 等. 高触变性高密度凝胶碳氢燃料的制备及性能[J]. 含能材料, 2019, 27(6): 501-508. |
E X T F, PAN L, ZHANG X W, et al. Synthesis and performance of high-density and high-thixotropy gelled hydrocarbon fuels[J]. Chinese Journal of Energetic Materials, 2019, 27(6): 501-508 (in Chinese). | |
63 | CAO J W, ZHANG Y C, PAN L, et al. Synthesis and characterization of gelled high-density fuels with low-molecular mass gellant[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(7): 1018-1026. |
64 | 杨立军, 刘陆昊, 富庆飞. 非牛顿流体射流雾化特性研究进展[J]. 航空学报, 2021, 42(12): 624974. |
YANG L J, LIU L H, FU Q F. Research progress in atomization characteristics of non-Newtonian fluid jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 624974 (in Chinese). | |
65 | SPALDING D B. The combustion of liquid fuels[J]. Symposium (International) on Combustion, 1953, 4(1): 847-864. |
66 | NAHAMONI G, NATAN B, NAHAMONI G, et al. Investigation of the combustion process of gel propellants[C]∥ 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997. |
67 | KOBAYASI K. An experimental study on the combustion of a fuel droplet[J]. Symposium (International) on Combustion, 1955, 5(1): 141-148. |
68 | ROSNER D E. On liquid droplet combustion at high pressures[J]. AIAA Journal, 1967, 5(1): 163-166. |
69 | WONG S C, TURNS S R. Ignition of aluminum slurry droplets[J]. Combustion Science and Technology, 1987, 52(4-6): 221-242. |
70 | WONG S C, TURNS S R. Disruptive burning of aluminum/carbon slurry droplets[J]. Combustion Science and Technology, 1989, 66(1-3): 75-92. |
71 | MUELLER D C, TURNS S R. Some aspects of secondary atomization of aluminum/hydrocarbon slurry propellants[J]. Journal of Propulsion and Power, 1993, 9(3): 345-352. |
72 | ANTAKI P, WILLIAMS F A. Observations on the combustion of boron slurry droplets in air[J]. Combustion and Flame, 1987, 67(1): 1-8. |
73 | ANTAKI P. Studies of slurry droplet combustion and boron particle ignition[D]. Princeton: Princeton University, 1988: 97-99. |
74 | TAKAHASHI F, DRYER F L, WILLIAMS F A. Combustion behavior of free boron slurry droplets[J]. Symposium (International) on Combustion, 1988, 21(1): 1983-1991. |
75 | TAKAHASHI F, HEILWEIL I J, DRYER F L. Disruptive burning mechanism of free slurry droplets[J]. Combustion Science and Technology, 1989, 65(1-3): 151-165. |
76 | GREEN G J, TAKAHASHI F, WALSH D E, et al. Aerodynamic device for generating mono-disperse fuel droplets[J]. Review of Scientific Instruments, 1989, 60(4): 646-652. |
77 | ANTAKI P. Transient processes in a rigid slurry droplet during liquid vaporization and combustion[J]. Combustion Science and Technology, 1986, 46(3-6): 113-135. |
78 | CHO S Y, TAKAHASHI F, DRYER F L. Some theoretical considerations on the combustion and disruption of free slurry droplets[J]. Combustion Science and Technology, 1989, 67(1-3): 37-57. |
79 | TYAGI H, PHELAN P E, PRASHER R, et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J]. Nano Letters, 2008, 8(5): 1410-1416. |
80 | GAN Y N, QIAO L. Burning characteristics of fuel droplets containing dilute energetic nanopartilces[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
81 | GAN Y N, QIAO L. Burning characteristics of fuel droplets with addition of nanoparticles at dilute and dense particle loading[C]∥ 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
82 | GAN Y N, QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles[C]∥ 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
83 | GAN Y N, LIM Y S, QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame, 2012, 159(4): 1732-1740. |
84 | TANVIR S, QIAO L. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J]. Journal of Propulsion and Power, 2015, 31(1): 408-415. |
85 | TANVIR S, QIAO L. Burning characteristics of liquid fuels with suspensions of energetic nanoparticles: The effect of droplet size[C]∥ 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
86 | JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(1): 191-206. |
87 | JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(3): 774-787. |
88 | 杨大力, 夏智勋, 胡建新, 等. 煤油凝胶单液滴燃烧特性试验[J]. 航空学报, 2016, 37(3): 847-853. |
YANG D L, XIA Z X, HU J X, et al. Experimental study on ignition and combustion characteristics of single kerosene gel droplet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 847-853 (in Chinese). | |
89 | 杨大力. 凝胶单液滴蒸发燃烧特性试验研究[D]. 长沙: 国防科技大学, 2015: 46-48. |
YANG D L. Experimental study on the evaporation and combustion characteristics of single gel droplet[D]. Changsha: National University of Defense Technology, 2015: 46-48 (in Chinese). | |
90 | MORDOSKY J, ZHANG B, KUO K, et al. Spray combustion of gelled RP-1 propellants containing nano-sized aluminum particles in rocket engine conditions[C]∥ 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001. |
91 | ELLISON R, HALL A, MOSER M. Gelled RP-1 nanophase aluminum propellant[C]∥ 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003. |
92 | LUO Y, XU X, ZOU J J, et al. Combustion of JP-10-based slurry with nanosized aluminum additives[J]. Journal of Propulsion and Power, 2016, 32(5): 1167-1177. |
93 | 邵昂, 朱韶华, 鄂秀天凤, 等. 含铝金属化浆体推进剂火箭发动机燃烧性能试验研究[J]. 推进技术, 2018, 39(7): 1650-1659. |
SHAO A, ZHU S H, E X T F, et al. Experimental study on combustion characteristic of rocket engine based on slurry propellant containing aluminum particles[J]. Journal of Propulsion Technology, 2018, 39(7): 1650-1659 (in Chinese). | |
94 | 刘毅, 鄂秀天凤, 李智欣, 等. 高能量密度液体燃料的火箭发动机燃烧性能研究[J]. 推进技术, 2019, 40(5): 1169-1176. |
LIU Y, E X T F, LI Z X, et al. Study on combustion performance of high-energy-density liquid fuels in rocket engine[J]. Journal of Propulsion Technology, 2019, 40(5): 1169-1176 (in Chinese). | |
95 | 靳雨树. 含纳米颗粒碳氢燃料的发动机燃烧及应用性能研究[D]. 北京: 北京航空航天大学, 2021: 57-78. |
JIN Y S. Study on combustion characteristic and engine applications of nanoparticle contained hydrocarbon fuels[D]. Beijing: Beihang University, 2021: 57-78 (in Chinese). | |
96 | VON KAMPEN J, ALBERIO F, CIEZKI H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J]. Aerospace Science and Technology, 2007, 11(1): 77-83. |
97 | NEGRI M, CIEZKI H. Combustion of gelled propellants containing aluminum particles[C]∥ 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
98 | NEGRI M, CIEZKI H K. Combustion of gelled propellants containing microsized and nanosized aluminum particles[J]. Journal of Propulsion and Power, 2014, 31(1): 400-407. |
99 | GAFNI G, KUZNETSOV A, NATAN B. Experimental investigation of an aluminized gel fuel ramjet combustor[J]. Chemical Rocket Propulsion, 2017, 31(1): 297-315. |
100 | GAFNI G, KUZNETSOV A, HAR-LEV D, et al. Experimental investigation of a ramjet combustor using an aluminized gel fuel[C]∥ 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
101 | XIAO Y L, XIA Z X, HUANG L Y, et al. Experimental investigation of the effects of chamber length and boron content on boron-based gel fuel ramjet performance[J]. Acta Astronautica, 2019, 160: 101-105. |
102 | JIN Y S, DOU S Y, YANG Q C, et al. Performance characteristics of a scramjet engine using JP-10 fuel containing aluminum nanoparticles[J]. Acta Astronautica, 2021, 185: 70-77. |
103 | JIN Y S, DOU S Y, WANG X, et al. Effect of nano-sized aluminum additive on wall heat transfer characteristics of the liquid-fueled scramjet engine[J]. Applied Thermal Engineering, 2021, 197: 117387. |
104 | PALASZEWSKI B, ZAKANY J. Metallized gelled propellants: Oxygen/RP-1/aluminum rocket combustion experiments[C]∥ 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995. |
105 | PALASZEWSKI B, ZAKANY J. Metallized gelled propellants─Oxygen/RP-1/aluminum rocket heat transfer and combustion measurements[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996. |
106 | PALASZEWSKI B. Metallized gelled propellants─Oxygen/RP-1/aluminum rocket engine calorimeter heat transfer measurements and analysis[C]∥ 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997. |
/
〈 |
|
〉 |