ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Determination of optimal observation period for X-ray pulsar-based navigation
Received date: 2021-11-02
Revised date: 2021-11-30
Accepted date: 2022-03-14
Online published: 2022-03-22
Supported by
Provincial and Ministerial Level Project
To improve the estimation accuracy of observation pulse phase, the relationship between pulsar observation period and observation pulse phase estimation accuracy in navigation is studied. Firstly, the theoretical lower bound of observation pulse phase estimation variance at spacecraft is derived, and then the relationship between observation pulse phase estimation error and pulsar observation period is given. Taking the minimum mean square error of observation pulse phase estimation as the criterion, the approximate calculation formula of the optimal observation period is given. Finally, the observational data of PSR B0531+21 are used to verify the correctness of the formula. The simulation results show that the prediction error of the given optimal observation period formula for PSR B0531+21 is 44 s, which proves the correctness of the formula given in this paper and provides a theoretical basis for determining the observation period of pulsars in navigation.
Jianyu SU , Haiyan FANG , Jingjing GAO , Liang ZHAO . Determination of optimal observation period for X-ray pulsar-based navigation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526597 -526597 . DOI: 10.7527/S1000-6893.2022.26597
1 | BERNHARDT M G, BECKER W, PRINZ T, et al. Autonomous spacecraft navigation based on pulsar timing information[C]∥2011 2nd International Conference on Space Technology. Piscataway: IEEE Press, 2011: 1-4. |
2 | CHESTER T J, Butman S A. Navigation using X-ray pulsars[R]. Washington D. C. : JPL, 1981. |
3 | WOOD K S. Navigation studies utilizing the NRL801 experiment and the ARGOS satellite[C]∥Proceedings of SPIE - The International Society for Optical Engineering, 1993. Bellingham : SPIE, 1993: 105-116. |
4 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005:1-5. |
5 | 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学, 2017, 47(9): 1-9. |
ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(9): 1-9 (in Chinese). | |
6 | 帅平,张新源,黄良伟,等. 脉冲星导航试验卫星科学观测数据分析[J]. 空间控制技术与应用, 2017, 43(2):1-9. |
SHUAI P, ZHANG X Y, HUANG L W, et al. X-ray pulsar navigation test satellite science data analysis [J]. Aerospace Control and Application, 2017, 43(2):1-9 (in Chinese). | |
7 | HUNG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the x-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 1-9. |
8 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[J]. The Astrophysical Journal Supplement Series, 2019, 244(1): 1-7. |
9 | YU W H, SEMPER S R, MITCHELL J W, et al. NASA SEXTANT Mission Operations Architecture[J]. Acta Astronaut, 2020, 176: 531-54. |
10 | WINTERNITZ L M B, HASSOUNEH M A, MITCHELL J W, et al. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14. |
11 | TAYLOR J H. Pulsar timing and relativistic gravity[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1992, 341(1660): 117-134. |
12 | EMADZADEH A A, SPEYER J L. On modeling and pulse phase estimation of X-ray pulsars[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4484-4495. |
13 | EMADZADEH A A, SPEYER J L. A new relative navigation system based on X-ray pulsar measurements[C]∥2010 IEEE Aerospace Conference. Piscataway: IEEE Press, 2010: 1-8. |
14 | EMADZADEH A A, SPEYER J L. Relative navigation between two spacecraft using X-ray pulsars[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1021-1035. |
15 | LI J X, KE X Z. Maximum-likelihood TOA estimation of X-ray pulsar signals on the basis of poison model[J]. Chinese Astronomy and Astrophysics, 2011, 35(1): 19-28. |
16 | 李鹏飞, 徐国栋, 董立珉, 等. X射线脉冲星信号时延的实时估计方法[J]. 航空学报, 2014, 35(7): 1966-1976. |
LI P F, XU G D, DONG L M, et al. A real time estimation method of time-delay for X-ray pulsar signal[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1966-1976 (in Chinese). | |
17 | 由四海, 王宏力, 冯磊, 等. 基于小波变换与压缩感知的脉冲星TOA估计[J]. 红外与激光工程, 2020, 49(2): 288-294. |
YOU S H, WANG H L, FENG L, et al. Pulsar TOA estimation based on wavelet transform and compressed sensing[J]. Infrared and Laser Engineering, 2020, 49(2): 288-294 (in Chinese). | |
18 | WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation, 2016, 69(2): 414-432. |
19 | LIU J, FANG J C, NING X L, et al. Closed-loop EKF-based pulsar navigation for Mars explorer with Doppler effects[J]. Journal of Navigation, 2014, 67(5): 776-790. |
20 | 黄良伟. 基于计时模型的X射线脉冲星自主导航与算法研究[D]. 北京: 清华大学, 2013. |
HUANG L W. Theory and algorithm study in X-ray pulsar autonomous based on pulsar timing model[D]. Beijing: Tsinghua University, 2013 (in Chinese). | |
21 | ZHANG H, XU L P, XIE Q. Modeling and Doppler measurement of X-ray pulsar[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(6): 1068-1076. |
22 | ANDERSON K D, PINES D. Experimental validation of pulse phase tracking for X-ray pulsar based spacecraft navigation[C]∥AIAA Guidance, Navigation, and Control (GNC) Conference. Reston: AIAA, 2013: 5202. |
23 | XUE M F, LI X P, FU L Z, et al. X-ray pulsar-based navigation using pulse phase and Doppler frequency measurements[J]. Science China Information Sciences, 2015, 58(12): 1-14. |
24 | SU J Y, FANG H Y, BAO W M, et al. Fast simulation of X-ray pulsar signals at a spacecraft[J]. Acta Astronautica, 2020, 166: 93-103. |
25 | 史蒂芬·凯. 统计信号处理基础[M]. 罗鹏飞, 张文明, 译. 北京:电子工业出版社, 2018: 68-142. |
STEVEN M K. Fundamental of statistical signal processing[M]. LUO P F, ZHANG W M, translated. Beijing: Publishing House of Electronics Industry, 2018: 68-142 (in Chinese). | |
26 | SMALE A P. Access to the catalogs and astronomical archives of the HEASARC[EB/OL]. [2022-01-31]. . |
/
〈 |
|
〉 |