Solid Mechanics and Vehicle Conceptual Design

Dynamics model updating of structures at high temperature based on novel particle swarm optimization algorithm

  • Zhenyu WANG ,
  • Jizhen WANG ,
  • Jingyi YANG ,
  • Pengyuan HE ,
  • Chenghao PAN ,
  • Lingbo ZHOU ,
  • Cheng HE ,
  • Huan HE
Expand
  • 1.State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Institute of Vibration Engineering Research,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.Key Laboratory of Aviation Science and Technology on Structures Impact Dynamics,China Aircraft Strength Research Institute,Xi’an 710065,China
    4.National Key Laboratory on Ship Vibration & Noise,China Ship Scientific Research Center,Wuxi 214082,China
    5.Research Institute of Unmanned Aircraft,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: hehuan@nuaa.edu.cn

Received date: 2021-10-25

  Revised date: 2022-02-11

  Accepted date: 2022-03-15

  Online published: 2022-03-22

Supported by

National Natural Science Foundation of China(12072153);the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics)(MCMS-I-0121G01)

Abstract

A dynamics model updating method for structures in high temperature environments based on a novel Particle Swarm Optimization (PSO) algorithm is proposed and successfully applied to the updating of the Finite Element (FE) model of a typical complex multi-component structure. The LOPSO algorithm was first designed by combining the Lévy flight strategy and the orthogonal learning method to overcome premature convergence while the PSO solves nonlinear optimization problems such as parameter identification and model updating. Then the proposed method was used to update the equivalent stiffness and damping parameters of shafting bearings. It is proved that the new algorithm has higher accuracy. Finally, we updated the FE model of a typical complex multi-component structure in high temperature environment based on the vibration experiment by the LOPSO method. After updating, the errors of the main modal frequencies in different temperature environments were reduced to less than 7%. The accuracy of the FE model was significantly improved, verifying the effectiveness of the proposed method and its applicability to engineering problems.

Cite this article

Zhenyu WANG , Jizhen WANG , Jingyi YANG , Pengyuan HE , Chenghao PAN , Lingbo ZHOU , Cheng HE , Huan HE . Dynamics model updating of structures at high temperature based on novel particle swarm optimization algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 226559 -226559 . DOI: 10.7527/S1000-6893.2022.26559

References

1 LIGUORE S, TZONG G. Identification of knowledge gaps in the predictive capability for response and life prediction of hypersonic vehicle structures[C]∥52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
2 袁昭旭. 高温环境中结构的动力学模型修正研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 1-20.
  YUAN Z X. Study on dynamic model updating for structures in high temperature environment[D]. Harbin: Harbin Institute of Technology, 2018: 1-20 (in Chinese).
3 张晓蕾, 于开平. 热环境下某飞行器振动特性分析与模型修正[J]. 噪声与振动控制201333(5): 67-71.
  ZHANG X L, YU K P. Vibration characteristics analysis and model modification of an aircraft in thermal environment[J]. Noise and Vibration Control201333(5): 67-71 (in Chinese).
4 何成. 高温环境下结构动力学建模关键技术研究[D]. 南京: 南京航空航天大学, 2014: 3-10.
  HE C. Key technology of dynamic modeling inhigh-temperature environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 3-10 (in Chinese).
5 Friswell M. I.. 结构动力学有限元模型修正[M]. 李双, 王帅, 洪良友, 等, 译. 北京: 科学出版社, 2017: 100-124.
  FRISWELL M I. Finite element model updating in structural dynamics[M]. LI S, WANG S, HONG L Y, et al, translated. Beijing: Science Press, 2017: 100-124 (in Chinese).
6 韩芳, 钟冬望, 汪君. 基于径向基神经网络的有限元模型修正研究[J]. 武汉科技大学学报201134(2): 115-118.
  HAN F, ZHONG D W, WANG J. Model updating based on radial basis function neural network[J]. Journal of Wuhan University of Science and Technology201134(2): 115-118 (in Chinese).
7 李伟明. 有限元模型修正方法及自由度匹配迭代技术研究[D]. 上海: 上海交通大学, 2011: 18-26.
  LI W M. Study on finite element model updating method and iterative technique for degree of freedom matching[D]. Shanghai: Shanghai Jiao Tong University, 2011: 18-26 (in Chinese).
8 张安平, 陈国平. 基于混合人工鱼群算法的结构有限元模型修正[J]. 航空学报201031(5): 940-945.
  ZHANG A P, CHEN G P. Structural finite element model updating based on hybrid artificial fish swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica201031(5): 940-945 (in Chinese).
9 HE H, HE C, CHEN G P. Inverse determination of temperature-dependent thermophysical parameters using multiobjective optimization methods[J]. International Journal of Heat and Mass Transfer201585: 694-702.
10 TRAN-NGOC H, HE L Q, REYNDERS E, et al. An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization[J]. Journal of Sound and Vibration2020476: 115315.
11 于开平, 刘荣贺. 多族群粒子群优化算法飞行器结构模型修正[J]. 振动与冲击201332(17): 79-83, 99.
  YU K P, LIU R H. Model updating of a spacecraft structure based on MRPSO[J]. Journal of Vibration and Shock201332(17): 79-83, 99 (in Chinese).
12 YIN T, ZHU H P. An efficient algorithm for architecture design of Bayesian neural network in structural model updating[J]. Computer-Aided Civil and Infrastructure Engineering202035(4): 354-372.
13 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报202041(12): 324183.
  XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica202041(12): 324183 (in Chinese).
14 SHI Y, EBERHART R. A modified particle swarm optimizer[C]∥1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Piscataway: IEEE Press, 1998: 69-73.
15 EBERHART R C, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]∥Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512). Piscataway: IEEE Press, 2000: 84-88.
16 CHATTERJEE A, SIARRY P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers & Operations Research200633(3): 859-871.
17 AL-BAHRANI L T, PATRA J C. A novel orthogonal PSO algorithm based on orthogonal diagonalization[J]. Swarm and Evolutionary Computation201840: 1-23.
18 ZHAN Z H, ZHANG J. Orthogonal learning particle swarm optimization for power electronic circuit optimization with free search range[C]∥2011 IEEE Congress of Evolutionary Computation. Piscataway: IEEE Press, 2011: 2563-2570.
19 ZHAO F Q, LIU Y, ZHANG C, et al. A self-adaptive harmony PSO search algorithm and its performance analysis[J]. Expert Systems with Applications201542(21): 7436-7455.
20 ZHANG X M, LIN Q Y, MAO W T, et al. Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization[J]. Applied Soft Computing2021101: 107061.
21 HAKL? H, U?UZ H. A novel particle swarm optimization algorithm with Levy flight[J]. Applied Soft Computing201423: 333-345.
22 YANG X S, DEB S. Cuckoo search via Lévy flights[C]∥2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Piscataway: IEEE Press, 2009: 210-214.
23 JENSI R, JIJI G W. An enhanced particle swarm optimization with levy flight for global optimization[J]. Applied Soft Computing201643: 248-261.
24 AL-BAHRANI L T, PATRA J C. A novel orthogonal PSO algorithm based on orthogonal diagonalization[J]. Swarm and Evolutionary Computation201840: 1-23.
25 于开平, 白云鹤, 赵锐, 等. 高温环境下结构模态试验技术[J]. 力学与实践201840(1): 1-12.
  YU K P, BAI Y H, ZHAO R, et al. Advance of experimental technologies for structural modal test in high temperature environments[J]. Mechanics in Engineering201840(1): 1-12 (in Chinese).
26 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报201233(9): 1633-1642.
  WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica201233(9): 1633-1642 (in Chinese).
27 Géron Aurélien. 机器学习实战:基于Scikit-Learn和TensorFlow[M]. 王静源, 贾玮, 边蕤, 等, 译. 北京: 机械工业出版社, 2018: 165-184.
  GéRON A. Hands-On Machine Learning with Scikit-Learn and Ten-sorFlow[M]. WANG J Y, JIA W, BIAN R, et al, translated. Beijing: China Machine Press, 2018: 165-184 (in Chinese).
Outlines

/