Articles

Research and application of virtual test technology for static strength of full scale aircraft structure

  • WANG Binwen ,
  • NIE Xiaohua ,
  • WAN Chunhua ,
  • WU Cunli
Expand
  • Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-08-25

  Revised date: 2022-06-25

  Online published: 2022-03-22

Supported by

Specialized Research Fund for Civil Aircraft (MJZ3-2 N21)

Abstract

Ground test is currently the most important means to verify the performance and qualities of aircraft. High load and large deformation occur in the ground static strength test of full-scale aircraft, the risks of aircraft structure unanticipated damage and testing system unanticipated breakdown bring great challenges for testing design and its implementation. The virtual testing technique has been investigated, and the digital model of testing system, virtualization of structure mechanical behavior and the physical and virtual fuse of testing process are established, with which the new double parallel and mutual fusion testing modes came into being. The virtual testing technology was successfully applied to the full-scale aircraft static test. Compared with test results, the errors of calculation displacements are less than 1%, and the errors of calculation strains is less than 10%. The virtual testing technology improves the reliability and security of the aircraft static test, and reduces the testing periods, which plays an important role in the aircraft development.

Cite this article

WANG Binwen , NIE Xiaohua , WAN Chunhua , WU Cunli . Research and application of virtual test technology for static strength of full scale aircraft structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 526273 -526273 . DOI: 10.7527/S1000-6893.2022.26273

References

[1] OSTERGAARD M G, IBBOTSON A R, ROUX O L, et al. Virtual testing of aircraft structures[J]. CEAS Aeronautical Journal, 2011, 1(1-4):83-103.
[2] GRIEVES M. Digital twin:Manufacturing excellence through virtual factory replication[R/OL]. (2015-04-20)[2021-08-24]. https://www.researchgate.net/publication/275211047.
[3] GRIEVES M. Origins of the digital twin concept[R/OL]. (2016-08-31)[2021-08-24]. https://www.researchgate.net/publication/307509727.
[4] ZHAO H W, DUAN S H, FENG J M. A preliminary study on application of closed-loop cross compensation control in accelerated fatigue testing[C]//33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2017:3324.
[5] 赵洪伟, 陈戈, 张革命, 等. 悬臂梁结构试验系统PID参数整定方法[J]. 控制工程, 2017, 24(2):297-303. ZHAO H W, CHEN G, ZHANG G M, et al. Study of PID tuning method for testing system of cantilever beam[J]. Control Engineering of China, 2017, 24(2):297-303(in Chinese).
[6] 万春华, 段世慧, 聂小华, 等. 大型航空结构有限元数值模拟方法研究[J]. 机械科学与技术, 2018, 37(5):816-820. WAN C H, DUAN S H, NIE X H, et al. Study on finite element modeling for large aircraft structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5):816-820(in Chinese).
[7] 孙侠生. 飞机结构强度新技术[M]. 北京:航空工业出版社, 2017. SUN X S. New technology for aircraft structure[M].Beijing:Aviation Industry Press, 2017(in Chinese).
[8] 聂小华, 吴存利. 考虑不确定性因素的有限元屈曲模型验证[J]. 力学与实践, 2017, 39(5):460-467. NIE X H, WU C L. Validation and confirmation of static finite element model by considering uncertainties[J]. Mechanics in Engineering, 2017, 39(5):460-467(in Chinese).
[9] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8):223987. WANG B W, AI S, ZHANG G F, et al. Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223987(in Chinese).
[10] 张国凡, 段世慧, 吴存利. 基于有限元的机翼加筋盒段后屈曲分析[J]. 计算机仿真, 2013, 30(3):84-87. ZHANG G F, DUAN S H, WU C L. Post-buckling analysis of stiffened wingbox base on FEM[J]. Computer Simulation, 2013, 30(3):84-87(in Chinese).
[11] 万春华, 段世慧, 吴存利. 加筋结构后屈曲有限元建模方法研究[J]. 机械科学与技术, 2015, 34(5):795-798. WAN C H, DUAN S H, WU C L. Study on the finite element modeling for post-buckling analysis of the stiffened structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5):795-798(in Chinese).
[12] 张国凡, 孙侠生, 吴存利, 等. 复合材料整体化多墙盒段渐进式失效分析和试验验证[J]. 复合材料学报, 2016, 33(10):2344-2354. ZHANG G F, SUN X S, WU C L, et al. Progressive failure analysis and test validation of integral multi-spar composite box[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2344-2354(in Chinese).
[13] 张国凡, 孙侠生, 吴存利. 复合材料帽型加筋壁板的失效机制分析与改进设计[J]. 复合材料学报, 2017, 34(11):2479-2486. ZHANG G F, SUN X S, WU C L. Failure mechanism analysis and design of omega stiffened composite panel[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2479-2486(in Chinese).
[14] 吴存利, 张国凡. 铆钉载荷变形曲线有限元数值分析[J]. 机械科学与技术, 2014, 33(8):1272-1276. WU C L, ZHANG G F. Numerical analysis of the loading-deformation curve for the rivet of lap metallic joints by using FEM[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(8):1272-1276(in Chinese).
[15] 吴存利, 万春华, 郭瑜超. 复合材料结构胶-螺连接区域内力分布计算及与试验对比研究[J]. 玻璃钢/复合材料, 2019(9):44-51. WU C L, WAN C H, GUO Y C. Internal force distribution calculation and experiment for bonded-bolted hybrid joints of composite structure[J]. Fiber Reinforced Plastics/Composites, 2019(9):44-51(in Chinese).
[16] 段世慧, 郝凤琴, 黄嘉璜. 结构试验与分析一致性评估技术[J]. 航空学报, 1998, 19(4):430-433. DUAN S H, HAO F Q, HUANG J H. Consistency evaluation of the structural test and analysis[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):430-433(in Chinese).
[17] 郭瑜超, 聂小华, 张生贵, 等. 航空结构仿真与试验应变一致性评估方法[J]. 机械强度, 2020, 42(1):246-250. GUO Y C, NIE X H, ZHANG S G, et al. Consistency evaluation of the aircraft structural simulation and test[J]. Journal of Mechanical Strength, 2020, 42(1):246-250(in Chinese).
[18] 张燕宁, 杨兆建, 丁华, 等. 基于XML技术的虚拟装配信息表达及其应用[J]. 机械设计与制造, 2014(9):205-207, 210. ZHANG Y N, YANG Z J, DING H, et al. Virtual assembly information expression based on XML technology and its application[J]. Machinery Design & Manufacture, 2014(9):205-207, 210(in Chinese).
[19] 刘子建, 王平, 艾彦迪. 面向过程的产品信息虚拟装配建模技术研究[J]. 中国机械工程, 2011, 22(1):60-64. LIU Z J, WANG P, AI Y D. Research on process-oriented virtual assembly modeling technology for product information[J]. China Mechanical Engineering, 2011, 22(1):60-64(in Chinese).
[20] LYNCH C J, MURPHY A, PRICE M, et al. The computational post buckling analysis of-fuselage stiffened panels loaded in compression[J]. Thin walled Structures, 2004, 42:1445-1464.
[21] LINDE P. Virtual testing of stiffened composite panels at airbus[J]. International Journal of Structural Stability and Dynamics, 2010, 10(4):589-600.
Outlines

/