Swarm Intelligence and Cooperative Control

Learning-based multi-rate multi-sensor fusion localization method

  • CHEN Bo ,
  • YUE Kai ,
  • WANG Rusheng ,
  • HU Mingnan
Expand
  • 1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Received date: 2022-01-06

  Revised date: 2022-01-20

  Online published: 2022-03-11

Supported by

Key Research and Development Program of Zhejiang Province (2022C03029);Zhejiang Provincial Natural Science Foundation of China (LR20F030004)

Abstract

This paper concerned with a class of problems of moving target tracking with unknown target motion model and multi-sensor asynchronous sampling. A data-driven target tracking algorithm is proposed, which only relies on measurement information. To solve the problem of the unknown motion model, a distributed neural network structure is designed based on the measurement model and measurement range, then the mapping relationship between the observation data and the state variables is established based on the designed neural network. A compensation strategy based on the measurement data at the last sampling instant is introduced to solve the multi-rate and multi-sensor sampling asynchronous problem. We also construct a weight network model with time difference as the input feature to estimate the real target position by iterative learning. An experiment is given to show the superiority and effectiveness of the proposed method.

Cite this article

CHEN Bo , YUE Kai , WANG Rusheng , HU Mingnan . Learning-based multi-rate multi-sensor fusion localization method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S1) : 726904 -726904 . DOI: 10.7527/S1000-6893.2022.26904

References

[1] OSHMAN Y, ARAD D. Enhanced air-to-air missile tracking using target orientation observations[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 595-606.
[2] ZHANG J, XING S Y, WANG J H, et al. Passive target tracking of multi-observation stations with angular velocity measurement[J]. Acta Armamentarii, 2019, 40(1): 107-114 (in Chinese). 张蛟, 邢士勇, 王建华, 等. 一种具有角速度量测的多站无源目标跟踪方法[J]. 兵工学报, 2019, 40(1): 107-114.
[3] LU C G, ZHOU Z L, LIU H Q, et al. Algorithm for fighter zigzag maneuver target tracking with correlated noises at one epoch apart[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 322071 (in Chinese). 卢春光, 周中良, 刘宏强, 等. 带异步相关噪声的战斗机蛇形机动跟踪算法[J]. 航空学报, 2018, 39(8): 322071.
[4] DAN Y F, MA Q L. Logistic transportation system based on integration of RFID, GPS and GIS technology[J]. Application Research of Computers, 2009, 26(12): 4628-4630, 4634 (in Chinese). 但雨芳, 马庆禄. RFID, GPS和GIS技术集成在交通智能监管系统中的应用研究[J]. 计算机应用研究, 2009, 26(12): 4628-4630, 4634.
[5] ZHEN J, WU J X, LIU J P, et al. A high accuracy positioning method for single base station in indoor emergency environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1146-1154 (in Chinese). 甄杰, 吴建新, 刘纪平, 等. 一种单基站高精度室内应急定位方法[J]. 武汉大学学报·信息科学版, 2020, 45(8): 1146-1154.
[6] SHI Z J, XU T F, LIU T J, et al. Research on indoor positioning technique based on iBeacon base station[J]. Mobile Communications, 2015, 39(7): 88-91 (in Chinese). 石志京, 徐铁峰, 刘太君, 等. 基于iBeacon基站的室内定位技术研究[J]. 移动通信, 2015, 39(7): 88-91.
[7] WANG Q, HE J, ZHANG Q X, et al. Ranging error classification based indoor TOA localization algorithm[J]. Chinese Journal of Scientific Instrument, 2011, 32(12): 2851-2856 (in Chinese). 王沁, 何杰, 张前雄, 等. 测距误差分级的室内TOA定位算法[J]. 仪器仪表学报, 2011, 32(12): 2851-2856.
[8] KE F L, HUANG X L, DUAN W J, et al. Design and implementation of localization system based on TDOA for wireless sensor networks[J]. Computer Measurement & Control, 2008, 16(2): 221-224 (in Chinese). 可方玲, 黄晓利, 段渭军, 等. 无线传感器网络TDOA定位系统的设计与实现[J]. 计算机测量与控制, 2008, 16(2): 221-224.
[9] QIAN Z H, SUN D Y, VICTOR L. A survey on localization model in wireless networks[J]. Chinese Journal of Computers, 2016, 39(6): 1237-1256 (in Chinese). 钱志鸿, 孙大洋, LEUNG Victor. 无线网络定位综述[J]. 计算机学报, 2016, 39(6): 1237-1256.
[10] FU X Y, JIA Y M. An improvement on resampling algorithm of particle filters[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5414-5420.
[11] QIAN H, ZHOU X Y, XU Z M, et al. Mobile sensor network node fast consensus filter localization[J]. Computer Science, 2013, 40(3): 155-158 (in Chinese). 钱慧, 周祥云, 许志猛, 等. 移动传感器网络节点快速一致性滤波定位[J]. 计算机科学, 2013, 40(3): 155-158.
[12] WANG R S, CHEN B, YU L. Distributed nonlinear fusion estimation without knowledge of noise statistical information: a robust design approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3107-3117.
[13] ZHONG R J, CHEN Q F. Cooperative positioning method using distance measurement within a cluster and direction finding of a target[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723768 (in Chinese). 钟日进, 陈琪锋. 利用集群内测距和对目标测向的协同定位方法[J]. 航空学报, 2020, 41(S1): 723768.
[14] LI T C, CORCHADO J M, BAJO J, et al. Effectiveness of Bayesian filters: an information fusion perspective[J]. Information Sciences, 2016, 329: 670-689.
[15] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
[16] KALMAN R E, BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering, 1961, 83(1): 95-108.
[17] CHEN B, HU G Q, HO D W C, et al. A new approach to linear/nonlinear distributed fusion estimation problem[J]. IEEE Transactions on Automatic Control, 2019, 64(3): 1301-1308.
[18] PERTTULA A, LEPP?KOSKI H, KIRKKO-JAAKKOLA M, et al. Distributed indoor positioning system with inertial measurements and map matching[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2682-2695.
[19] ZHANG M, WEI P. DOA passive location algorithm on least mean square error criterion[J]. Electronic Information Warfare Technology, 2009, 24(4): 8-11, 29 (in Chinese). 张敏, 魏平. 一种基于最小均方误差准则的唯方位定位方法[J]. 电子信息对抗技术, 2009, 24(4): 8-11, 29.
[20] HUANG B, LIU Z, WU L. Maximum likelihood estimation and iterative algorithm for bearings-only target motion analysis[J]. Journal of Naval University of Engineering, 2013, 25(1): 54-58 (in Chinese). 黄波, 刘忠, 吴玲. 纯方位目标运动状态的极大似然估计及迭代算法[J]. 海军工程大学学报, 2013, 25(1): 54-58.
[21] LI T C, CORCHADO J M, SUN S D, et al. Clustering for filtering: Multi-object detection and estimation using multiple/massive sensors[J]. Information Sciences, 2017, 388-389: 172-190.
[22] CHERNOGUZ N G. A smoothed Newton-Gauss method with application to bearing-only position location[J]. IEEE Transactions on Signal Processing, 1995, 43(8): 2011-2013.
[23] HE Y. Multisensor information fusion with applications [J]. Journal of Electronics and Information Technology, 2000, 23(1): 60-61 (in Chinese). 何友. 多传感器信息融合及应用[J]. 电子与信息学报, 2000, 23(1): 60-61.
[24] CHOU K C, WILLSKY A S, BENVENISTE A. Multiscale recursive estimation, data fusion, and regularization[J]. IEEE Transactions on Automatic Control, 1994, 39(3): 464-478.
[25] ZHANG L, WU X L, PAN Q, et al. Multiresolution modeling and estimation of multisensor data[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3170-3182.
[26]
[27] DENG Z H, YAN L P, FU M Y. Multirate multisensor data fusion based on missing measurements[J]. Systems Engineering and Electronics, 2010, 32(5): 886-890, 958 (in Chinese). 邓志红, 闫莉萍, 付梦印. 基于不完全观测数据的多速率多传感器数据融合[J]. 系统工程与电子技术, 2010, 32(5): 886-890, 958.
[28] DAYHOFF J E, DELEO J M. Artificial neural networks[J]. Cancer, 2001, 91(S8): 1615-1635.
[29] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016: 45-49.
[30] FU S, KONG X W, LI Z, et al. Bearing-only target cross location of multi-station based on nonlinear least squares[J]. Fire Control and Command Control, 2009, 34(8): 80-83 (in Chinese). 富森, 孔祥维, 李哲, 等. 多基纯方位目标交叉定位中的非线性最小二乘方法[J]. 火力与指挥控制, 2009, 34(8): 80-83.
[31] ZENG Z K, CAO X B, ZHANG S J, et al. Vision/IMU based multi-rate filtering for spacecraft relative navigation using measurement correction[J]. Journal of Harbin Institute of Technology, 2015, 47(3): 1-7 (in Chinese). 曾占魁, 曹喜滨, 张世杰, 等. 航天器相对视觉/IMU导航量测修正多速率滤波[J]. 哈尔滨工业大学学报, 2015, 47(3): 1-7.
Outlines

/