ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Control method of constellation relative-configuration maintenance based on inter-satellite links
Received date: 2021-12-10
Revised date: 2022-01-11
Accepted date: 2022-03-08
Online published: 2022-03-11
Supported by
Sponsored by Shanghai Rising-Star Program(17QB1401400)
In this paper, maintenance of huge constellation configuration with orbit perturbation is studied in terms of motion characteristics. Considering the in-plane relative motion caused by air drag and different area-mass ratios, a second order consensus control method is proposed for constellation relative-configuration maintenance. Considering the connection situation of inter-satellite links and the characteristics of close-loop network, a construction method of the graph theory for different topologies is developed. Compared to the classical absolute position maintenance of constellation, the relative configuration maintenance method only needs to reduce the configuration excursion caused by different mass-area ratios. Therefore, the relative configuration maintenance method is more effective in energy saving. Then, simulation of relative-configuration maintenance in star structure constellation is conducted. The simulation results show that relative-configuration maintenance can achieve long-term stability of a constellation configuration.
Shengqing YANG , Jingyu WU , Wenshan ZHU , Chao ZHONG . Control method of constellation relative-configuration maintenance based on inter-satellite links[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 326796 -326796 . DOI: 10.7527/S1000-6893.2022.26796
1 | 阮永井, 胡敏, 云朝明. 低轨巨型星座构型设计与控制研究进展与展望[J]. 中国空间科学技术, 2022, 42(1): 1-15. |
RUAN Y J, HU M, YUN C M. Advances and prospects of the configuration design and control research of the LEO mega-constellations[J]. Chinese Space Science and Technology, 2022, 42(1): 1-15 (in Chinese). | |
2 | KECHICHIAN J A. Orbit plane control strategies for inclined geosynchronous satellite constellation[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 46-54. |
3 | OGAWA N, TSUDA Y, KAWAKATSU Y, et al. How to establish and maintain orthogonal constellation with two orbiters under J2 perturbation[C]∥AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2010. |
4 | 杨盛庆, 王禹, 王丹娜, 等. 连续小推力条件下星座轨道机动方法研究[J]. 中国空间科学技术, 2020, 40(4): 69-77. |
YANG S Q, WANG Y, WANG D N, et al. Study on maneuver methods of satellites constellation with continual small-thrust propulsion[J]. Chinese Space Science and Technology, 2020, 40(4): 69-77 (in Chinese). | |
5 | HANSON J M, LINDEN A N. Improved low-altitude constellation design methods[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(2): 228-236. |
6 | 王瑞, 向开恒, 马兴瑞. 平均轨道要素及其在卫星星座设计中的应用[J]. 中国空间科学技术, 2002, 22(5): 14-20. |
WANG R, XIANG K H, MA X R. The mean orbit elements and its application in the satellite constellation design[J]. Chinese Space Science and Technology, 2002, 22(5): 14-20 (in Chinese). | |
7 | 王海丽, 陈磊, 任萱. 卫星星座全球连续覆盖的仿真分析与优化[J]. 中国空间科学技术, 2001, 21(1): 16-22. |
WANG H L, CHEN L, REN X. Simulation analysis and optimization of constellation’s global continuous coverage[J]. Chinese Space Science and Technology, 2001, 21(1): 16-22 (in Chinese). | |
8 | 王瑞, 马兴瑞, 李明. 采用遗传算法进行区域覆盖卫星星座优化设计[J]. 宇航学报, 2002, 23(3): 24-28. |
WANG R, MA X R, LI M. Optimization of regional coverage satellite constellations by genetic algorithm[J]. Journal of Astronautics, 2002, 23(3): 24-28 (in Chinese). | |
9 | 胡松杰, 陈力, 刘林. 卫星星座的结构演化[J]. 天文学报, 2003, 44(1): 46-54. |
HU S J, CHEN L, LIU L. The structure evolution of satellite constellation[J]. Acta Astronomica Sinica, 2003, 44(1): 46-54 (in Chinese). | |
10 | 张洪华, 张国峰, 林来兴. 考虑J2项摄动的星座相对运动控制[J]. 宇航学报, 2003, 24(5): 478-483. |
ZHANG H H, ZHANG G F, LIN L X. Relative motion control for formation flying satellite constellations in the presence of J2 perturbation[J]. Journal of Astronautics, 2003, 24(5): 478-483 (in Chinese). | |
11 | 项军华, 张育林. 地球非球形对卫星轨道的长期影响及补偿研究[J]. 飞行力学, 2007, 25(2): 85-88. |
XIANG J H, ZHANG Y L. Study on secular effect caused by earth non-spherical and compensation for its effect[J]. Flight Dynamics, 2007, 25(2): 85-88 (in Chinese). | |
12 | 杨维廉. 利用大气阻力对卫星星座的控制[J]. 航天器工程, 1999, 8(1): 16-20. |
YANG W L. Constellation control using air-drag[J]. Spacecraft Engineering, 1999, 8(1): 16-20 (in Chinese). | |
13 | 向开恒, 曲广吉, 肖业伦. 利用空气阻力进行卫星星座的站位保持研究[J]. 航天器工程, 2003, 12(2): 1-8. |
XIANG K H, QU G J, XIAO Y L. Study on station keeping of constellation using air-drag[J]. Spacecraft Engineering, 2003, 12(2): 1-8 (in Chinese). | |
14 | 姜宇, 李恒年, 宝音贺西. Walker星座摄动分析与保持控制策略[J]. 空间控制技术与应用, 2013, 39(2): 36-41. |
JIANG Y, LI H N, BAOYI H X. On perturbation and orbital maintenance control strategy for walker constellation[J]. Aerospace Control and Application, 2013, 39(2): 36-41 (in Chinese). | |
15 | 李玖阳, 胡敏, 王许煜, 等. 低轨大规模Walker通信星座构型控制仿真系统研究[J]. 航天控制, 2021, 39(3): 69-75. |
LI J Y, HU M, WANG X Y, et al. Research on the configuration control simulation system of LEO large-scale walker communication constellation[J]. Aerospace Control, 2021, 39(3): 69-75 (in Chinese). | |
16 | 杨嘉墀. 航天器轨道动力学与控制-上[M]. 北京: 中国宇航出版社, 1995. |
YANG J C. Orbital dynamics and control of spacecraft[M]. Beijing: China Astronautic Publishing House, 1995 (in Chinese). | |
17 | 孙俞, 沈红新. 基于TLE的低轨巨星座控制研究[J]. 力学与实践, 2020, 42(2): 156-162. |
SUN Y, SHEN H X. The control of mega-constellation at low earth orbit based on TLE[J]. Mechanics in Engineering, 2020, 42(2): 156-162 (in Chinese). | |
18 | 杨晓龙, 刘忠汉. 基于覆盖性能的Walker-δ星座构型保持[J]. 空间控制技术与应用, 2012, 38(2): 53-57. |
YANG X L, LIU Z H. Walker-δ constellation configuration maintenance based on coverage performance[J]. Aerospace Control and Application, 2012, 38(2): 53-57 (in Chinese). | |
19 | ARNAS D, CASANOVA D, TRESACO E. Relative and absolute station-keeping for two-dimensional-lattice flower constellations[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(11): 2596-2602. |
20 | REN W, BEARD R W. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J]. Journal of Guidance Contorl and Dynamics, 2009, 27(1): 73-82. |
21 | 陈志明, 王惠南, 刘海颖. 基于信息一致性的分布式卫星姿态同步研究[J]. 宇航学报, 2010, 31(10): 2283-2288. |
CHEN Z M, WANG H N, LIU H Y. Research on distributed satellite attitude synchronization based on information consensus[J]. Journal of Astronautics, 2010, 31(10): 2283-2288 (in Chinese). | |
22 | LEE S, MORTARI D. Design of constellations for earth observation with intersatellite links[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(5): 1261-1269. |
23 | 刘付成, 梅杰, 马广富. 有向图中模块化航天器系统相对轨道的自适应分布式一致性[J]. 控制理论与应用, 2014, 31(2): 223-229. |
LIU F C, MEI J, MA G F. Adaptive distributed consensus for relative orbit of modular spacecrafts under a directed graph[J]. Control Theory & Applications, 2014, 31(2): 223-229 (in Chinese). | |
24 | 吕腾, 李传江, 郭延宁, 等. 有向拓扑下无径向速度测量的多导弹协同制导[J]. 宇航学报, 2018, 39(11): 1238-1247. |
LV T, LI C J, GUO Y N, et al. Cooperative guidance without radial velocity measurement for multiple missiles under directed topologies[J]. Journal of Astronautics, 2018, 39(11): 1238-1247 (in Chinese). | |
25 | REN W, ATKINS E. Second-order consensus protocols in multiple vehicle systems with local interactions[C]∥AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005. |
26 | YAYLALI D, BUTCHER E A, DABIRI A. Fractional PID consensus control protocols for second-order multiagent systems[C]∥AIAA SciTech 2019 Forum. Reston, Virginia: AIAA, 2019. |
27 | CAO Y C, REN W, LI Y. Distributed discrete-time consensus with a time-varying reference state[C]∥AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008. |
28 | 刘聪, 周强, 胡晓光. 离散时间异质多智能体系统的一致性控制[J]. 工程科学学报, 2016, 38(1): 143-148. |
LIU C, ZHOU Q, HU X G. Consensus control of discrete-time heterogeneous multi-agent systems[J]. Chinese Journal of Engineering, 2016, 38(1): 143-148 (in Chinese). | |
29 | 庄洪春,马瑞平. 宇航空间环境手册[M]. 北京:中国科学技术出版社, 2000. |
ZHUANG H C, MA R P. Book of astronautical space environment[M]. Beijing: Science and Technology of China Press, 2000 (in Chinese). |
/
〈 |
|
〉 |