Articles

Experiment on longitudinal dynamic impact characteristics of typical aircraft seat/occupant system

  • YANG Huan ,
  • LIU Xiaochuan ,
  • BAI Chunyu ,
  • ZHANG Yu ,
  • XI Xulong
Expand
  • 1. Aircraft Strength Research Institute of China, Xi'an 710065, China;
    2. Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, Xi'an 710065, China

Received date: 2021-08-17

  Revised date: 2022-03-15

  Online published: 2022-03-11

Supported by

National Scientific Research Project

Abstract

This paper studies the longitudinal dynamic impact characteristics and the load transfer law of the typical aircraft seat/occupant system. With a comprehensive consideration of the pulse waveform, dummy response and seat response, the longitudinal dynamic impact process of the seat/occupant system is simulated based on the structure longitudinal dynamic crash test sled system to test and analyze the motion process and the trajectory of the dummy, the response of the internal acceleration and load of the dummy, and the acceleration and the strain of the typical part on the seat structure. The changing law of dynamic impact response of seat/occupant system is researched based on the experimental results. The results show that the dummy has significant head movement, the change trend of the dummy internal response is similar to the acceleration pulse waveform, and the pelvic acceleration and the lumbar spine load of the dummy are the largest, and the probability of the damage is the largest. Both the seat and the dummy have two load transfer paths, and the load mainly passes through the seat back leg and the dummy lumbar spine. The whole seat structure is in the elastic deformation stage, with the change trend of the typical acceleration being similar to the acceleration pulse waveform, and the seat back leg and the joint between the seat back tube and the armrest frame being subject to the greatest load and the maximum strain. The acceleration and the strain inside the seat are closely related to the Z-direction distance of the corresponding marking point.

Cite this article

YANG Huan , LIU Xiaochuan , BAI Chunyu , ZHANG Yu , XI Xulong . Experiment on longitudinal dynamic impact characteristics of typical aircraft seat/occupant system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 526238 -526238 . DOI: 10.7527/S1000-6893.2022.26238

References

[1] 中国民用航空局. 中国民用航空规章:第23部正常类、实用类、特技类和通勤类飞机适航规定:CCAR-23-R3[S]. 北京:中国民用航空局, 2004. Civil Aviation Administration of China. China civil aviation regulations:Part 23 airworthiness regulations for normal, utility, aerobatic and commuter aircraft:CCAR-23-R3[S]. Beijing:Civil Aviation Administration of China, 2004(in Chinese).
[2] 中国民用航空局. 中国民用航空规章:第25部运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. China civil aviation regulations:Part 25 airworthiness standards for transport aircraft:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[3] 中国民用航空局. 中国民用航空规章:第27部正常类旋翼航空器适航规定:CCAR-27-R2[S]. 北京:中国民用航空局, 2017. Civil Aviation Administration of China. China civil aviation regulations:Part 27 airworthiness regulations for normal rotorcraft:CCAR-27-R2[S]. Beijing:Civil Aviation Administration of China, 2017(in Chinese).
[4] 中国民用航空局. 中国民用航空规章:第29部运输类旋翼航空器适航规定:CCAR-29-R2[S]. 北京:中国民用航空局, 2017. Civil Aviation Administration of China. China civil aviation regulations:Part 29 airworthiness regulations for transport rotorcraft:CCAR-29-R2[S]. Beijing:Civil Aviation Administration of China, 2017(in Chinese).
[5] VIANO D C, PARENTEAU C S, BURNETT R A, et al. Influence of seating position on dummy responses with ABTS seats in severe rear impacts[C]//SAE Technical Paper Series. Warrendale:SAE International, 2009:01-0250.
[6] ŻUCHOWSKI A. Seatbelt impact on a child during a frontal collision[J]. The Archives of Automotive Engineering-Archiwum Motoryzacji, 2017; 75(1):105-124.
[7] THORBOLE C K, THOKADE S, LANKARANI H. Pelvis kinematics assessment for improving far-side child protection positioned in a booster seat[J]. International Journal of Crashworthiness, 2020, 25(5):536-544.
[8] LAMANNA G, VANACORE A, GUIDA M, et al. Development of a head injury criteria-compliant aircraft seat by design of experiments[J]. Aerospace, 2019, 6(9):95.
[9] GUIDA M, MANZONI A, ZUPPARDI A, et al. Development of a multibody system for crashworthiness certification of aircraft seat[J]. Multibody System Dynamics, 2018, 44(2):191-221.
[10] OLIVARES G. Hybrid II and Federal aviation Administration Hybrid III anthropomorphic test dummy dynamic evaluation test series:FAA/AR-11/24[R]. Wichita:National Institute for Aviation Research and Wichita State University, 2013.
[11] LANKARANI H, MIRZA M G. Parametric study of crashworthy bulkhead designs:DOT/FAA/AR-02/103[R]. Washington, D.C.:Federal Aviation Administration, 2002.
[12] Federal Aviation Administration. Evaluation of aerospace 2-point lap belts under dynamic test conditions:DOT/FAA/TC-15/29[R]. Washington, D.C.:Federal Aviation Administration, 2015.
[13] ROBINSON L, ATKIN J, PAYNE T, et al. SEBED-Seat belt degradation:EASA. 2010. C21/EASA.E2.2011. C11[R]. Brussels:European Aviation Safety Agency, 2012.
[14] NAGARAJAN H, MCCOY M, KOSHY C S, et al. Design, fabrication and testing of a component HIC tester for aircraft applications[J]. International Journal of Crashworthiness, 2005, 10(5):515-523.
[15] PRABHU G. Parametric study of head paths and hic data for aircraft seat and cabin interior certification[D]. Wichita:Wichita State University, 2006:24-39.
[16] HUCULAK R D, LANKARANI H M. Use of Euler parameters for the evaluation of ATD head trajectory from angular rate sensor and accelerometer data in aircraft seat certification testing[J]. International Journal of Crashworthiness, 2013, 18(2):174-182.
[17] 高永亮, 吴立言, 贺朝霞. 冲击载荷下弹射座椅的结构优化设计方法研究[J]. 机械设计, 2008, 25(1):8-9, 58. GAO Y L, WU L Y, HE Z X. Study on structural optimization designing method of ejection seat under impact loads[J]. Journal of Machine Design, 2008, 25(1):8-9, 58(in Chinese).
[18] 韩冰, 刘更, 吴立言, 等. 弹射座椅冲击特性试验及仿真研究[J]. 中国机械工程, 2016, 27(9):1165-1168. HAN B, LIU G, WU L Y, et al. Experiments and simulation of ejection seat impact dynamics[J]. China Mechanical Engineering, 2016, 27(9):1165-1168(in Chinese).
[19] 谢燕, 雷勇军, 李道奎, 等. 考虑水平冲击的飞船座椅缓冲器力学特性设计[J]. 工程力学, 2009, 26(9):186-190. XIE Y, LEI Y J, LI D K, et al. The buffer force design of a seat-buffer machine in manned spacecraft considering horizontal landing shock[J]. Engineering Mechanics, 2009, 26(9):186-190(in Chinese).
[20] 谢燕. 飞船返回舱着陆冲击缓冲座椅系统改进设计研究[D]. 长沙:国防科学技术大学, 2010:130-161. XIE Y. Research on improved design for landing impact buffer seat system in reentry capsule of manned spacecraft[D]. Changsha:National University of Defense Technology, 2010:130-161(in Chinese).
[21] 林逸, 姚为民, 孙丹丹. 承受冲击时汽车座椅结构安全性研究[J]. 北京理工大学学报, 2005, 25(1):18-21, 26. LIN Y, YAO W M, SUN D D. Study on automobile seat safety performance during impact[J]. Transactions of Beijing Institute of Technology, 2005, 25(1):18-21, 26(in Chinese).
[22] 张帆. 基于冲击动力学响应分析的汽车座椅结构研究[D]. 天津:天津科技大学, 2014:20-56. ZHANG F. A study of the car seat structure based on impact dynamic response and analysis[D]. Tianjin:Tianjin University of Science & Technology, 2014:20-56. (in Chinese).
[23] 孙靖譞, 吕振华. 车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化[J]. 清华大学学报(自然科学版), 2016, 56(12):1302-1311. SUN J X, Lü Z H. Protection performance simulation and anchoring optimization of seat safety belts of vehicle under vertical intensive shock[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(12):1302-1311(in Chinese).
[24] 任佳, 刘小川, 杨建波, 等. 装甲车座椅抗地雷爆炸冲击模拟试验方法研究[J]. 应用力学学报, 2020, 37(6):2535-2543, 2703. REN J, LIU X C, YANG J B, et al. Anti-mine explosion shock simulated test method of the armored vehicle seat[J]. Chinese Journal of Applied Mechanics, 2020, 37(6):2535-2543, 2703(in Chinese).
[25] 王锐, 洪涛. 民航座椅水平冲击试验中工装碰撞的研究[J]. 机械工程与自动化, 2020(6):51-53. WANG R, HONG T. Research on tooling collision in horizontal impact test of civil aviation seat[J]. Mechanical Engineering & Automation, 2020(6):51-53(in Chinese).
[26] 罗国雄,靳志胜. 民机座椅动态冲击试验的光学测试技术[C]//2016航空试验测试技术学术交流会论文集.北京:中国航空学会, 2016:3. LUO G X, JIN Z S. Optical testing technology for dynamic impact test of civil aircraft seat[C]//Proceedings of 2016 Aeronautical Test Technology Academic Exchange Conference. Beijing:Chinese Aeronautical Society, 2016:3(in Chinese).
[27] 杨全, 谭玉生. 基于Johnson-Cook模型某航空16 g座椅滑轨冲击动力学分析[J]. 科学技术与工程, 2017, 17(8):312-316. YANG Q, TAN Y S. Impact dynamics analysis of an aviation seat track based on Johnson-cook model[J]. Science Technology and Engineering, 2017, 17(8):312-316(in Chinese).
[28] 罗亨存, 杨智春, 李斌. 座椅固定连接装置的动态失效分析[J]. 机械科学与技术, 2011, 30(5):741-745. LUO H C, YANG Z C, LI B. Dynamic failure analysis for attachments of flight passenger seats[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(5):741-745(in Chinese).
[29] 贺永龙. 动态冲击下航空假人/座椅约束系统的响应分析[D]. 天津:中国民航大学, 2019:20-56. HE Y L. Response analysis of aircraft dummy/seat restraint system under dynamic impact[D]. Tianjin:Civil Aviation University of China, 2019:20-56(in Chinese).
[30] 解江, 马士成, 贺永龙, 等. 水平冲击下头排乘员损伤及保护姿势研究[J]. 航空学报, 2020, 41(5):223489. XIE J, MA S C, HE Y L, et al. Research on injury and brace position for front-row occupant under horizontal impact[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):223489(in Chinese).
[31] 冯振宇, 刘旭, 林岚辉, 等. 安全带对航空座椅及乘员冲击响应的影响[J]. 航空学报, 2022, 43(1):224808. FENG Z Y, LIU X, LIN L H, et al. Impact of seatbelts on impact characteristics of aviation seats and occupants[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):224808(in Chinese).
[32] 郑亚明. 某轻型飞机驾驶员座椅装机动态水平冲击试验分析[J]. 中国科技信息, 2015(10):31-33. ZHENG Y M. Dynamic horizontal impact test analysis of a light aircraft pilot's seat installation[J]. China Science and Technology Information, 2015(10):31-33(in Chinese).
[33] 黄万甲, 韩亮. 某型航空座椅装机动态水平冲击试验临界状态选取[J]. 机械强度, 2016, 38(3):662-666. HUANG W J, HAN L. Critical state selection of the dynamic horizontal impact test for a certain type airline seat installed[J]. Journal of Mechanical Strength, 2016, 38(3):662-666(in Chinese).
[34] Society of Automotive Engineering International. Instrumentation for impact test-part 1:electronic instrumentation:SAE J211-1[S]. Wichita:Society of Automotive Engineering International, 2014.
[35] Society of Automotive Engineering International. Instrumentation for impact test-part 2:photographic instrumentation:SAE J211-2[S]. Wichita:Society of Automotive Engineering International, 2014.
[36] National Highway Traffic Safety Administration. Occupant crash protection:FMVSS 208[S]. Washington, D.C.:National Highway Traffic Safety Administration, 2010.
Outlines

/