Articles

Flight test for gust alleviation on a high aspect ratio UAV platform

  • ZHOU Yitao ,
  • YANG Yang ,
  • WU Zhigang ,
  • YANG Chao
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. China Airborne Missile Academy, Luoyang 471009, China

Received date: 2021-07-20

  Revised date: 2022-03-14

  Online published: 2022-03-11

Abstract

Gust alleviation active control technology is a powerful means for aircraft to deal with the impact of gust. In order to evaluate the designed gust alleviation system, flight test is indispensable. However, how to evaluate the effectiveness of the gust alleviation system is a difficult problem, because it is difficult to accurately measure wind gusts under natural conditions. To solve this problem, this paper proposes an "open-close" statistical test method. Taking a large aspect ratio UAV as the test object, the gust alleviation system was designed based on PID control principles and was superimposed on the original aircraft's stabilization system for flight tests. The results were analyzed by statistical methods which show that the centroid overload of the aircraft equipped with the gust alleviation system is reduced by 20.5%, and the wing root bending moment is reduced by 12.9%, which indicate that the test method proposed in this paper is feasible and effective.

Cite this article

ZHOU Yitao , YANG Yang , WU Zhigang , YANG Chao . Flight test for gust alleviation on a high aspect ratio UAV platform[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 526126 -526126 . DOI: 10.7527/S1000-6893.2022.26126

References

[1] HUNSAKER J C, WILSON E B. Report on behavior of aeroplane in gusts:NACA Rept.1[R]. Washington, D.C.:NACA, 1915.
[2] COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a morphing wingtip[J]. Journal of Aircraft, 2015, 52(5):1394-1403.
[3] BERNHAMMER L O, PW T S, ROELAND D B, et al. Gust load alleviation of an unmanned aerial vehicle wing using variable camber[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7):795-805.
[4] COOPER J, MILLER S, SENSBURG O, et al. Optimization of a scaled sensorcraft model with passive gust alleviation[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2008.
[5] BI Y, XIE C C, AN C, et al. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control[J]. Chinese Journal of Aeronautics, 2017, 30(1):292-309.
[6] DE SOUZA SIQUEIRA VERSIANI T, SILVESTRE F J, GUIMARÃES NETO A B, et al. Gust load alleviation in a flexible smart idealized wing[J]. Aerospace Science and Technology, 2019, 86:762-774.
[7] HOBLIT F M. Gust loads on aircraft:Concepts and applications[M]. Reston:AIAA Education Series, 1988.
[8] ETKIN B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5):327-345.
[9] DONE G. Introduction to aircraft aeroelasticity and loads[J]. The Aeronautical Journal, 2008, 112(1138):738-739.
[10] KARPEL M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling[J]. Journal of Aircraft, 1982, 19(3):221-227.
[11] 吴志刚, 陈磊, 杨超, 等. 弹性飞机阵风响应建模与减缓方案设计[J]. 中国科学:技术科学, 2011, 41(3):394-402. WU Z G, CHEN L, YANG C, et al. Gust response modeling and alleviation scheme design for an elastic aircraft[J]. Scientia Sinica (Technologica), 2011, 41(3):394-402(in Chinese).
[12] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese).
[13] 顾宁, 陆志良, 郭同庆, 等. 阵风响应及减缓的非定常数值模拟[J]. 航空计算技术, 2012, 42(3):49-53. GU N, LU Z L, GUO T Q, et al. Gust response and alleviation analysis of airfoil[J]. Aeronautical Computing Technique, 2012, 42(3):49-53(in Chinese).
[14] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese).
[15] 张军红, 李振水, 詹孟权, 等. LQG控制理论在阵风载荷减缓系统中的应用[J]. 飞行力学, 2007, 25(2):61-64. ZHANG J H, LI Z S, ZHAN M Q, et al. Application of LQG theory to gust load alleviation system[J]. Flight Dynamics, 2007, 25(2):61-64(in Chinese).
[16] 刘祥, 孙秦. 一种弹性机翼的颤振主动抑制与阵风减缓方法[J]. 西北工业大学学报, 2015, 33(5):804-810. LIU X, SUN Q. A robust active flutter suppression and gust alleviation method for flexible wing[J]. Journal of Northwestern Polytechnical University, 2015, 33(5):804-810(in Chinese).
[17] 李卫琪, 张平, 陈宗基. 基于控制分配方法的阵风减缓控制律设计[J]. 系统仿真学报, 2008, 20(S2):247-251, 256. LI W Q, ZHANG P, CHEN Z J. Control allocation method based gust alleviation control design[J]. Journal of System Simulation, 2008, 20(S2):247-251, 256(in Chinese).
[18] ZHAO Y H, YUE C Y, HU H Y. Gust load alleviation on a large transport airplane[J]. Journal of Aircraft, 2016, 53(6):1932-1946.
[19] WINTHER B A, SHIRLEY W A, HEIMBAUGH R M. Wind-tunnel investigation of active controls technology applied to a DC-10 derivative[J]. Journal of Guidance and Control, 1981, 4(5):536-542.
[20] PENNING K, LOVE M, ZINK P, et al. GLA and flutter suppression for a SensorCraft class concept using system identification[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008:7188.
[21] VARTIO E, SHIMKO A, TILMANN C, et al. Structural modal control and gust load alleviation for a SensorCraft concept[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005:1946.
[22] SCOTT R, COULSON D, CASTELLUCCIO M, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011.
[23] MATSUZAKI Y, UEDA T, MIYAZAWA Y, et al. Gust load alleviation of a transport-type wing-Test and analysis[J]. Journal of Aircraft, 1989, 26(4):322-327.
[24] CHRISTHILF D, MOULIN B, RITZ E, et al. Characteristics of control laws tested on the semi-span super-sonic transport (S4T) wind-tunnel model[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012.
[25] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Progress on gust load alleviation wind tunnel experiment and aeroservoelastic model validation for a flexible wing with variable camber continuous trailing edge flap system[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[26] CHEUNG R C M, REZGUI D, COOPER J E, et al. Testing of folding wingtip for gust load alleviation of flexible high-aspect-ratio wing[J]. Journal of Aircraft, 2020, 57(5):876-888.
[27] 陈磊, 吴志刚, 杨超, 等. 弹性机翼阵风响应和载荷减缓与风洞试验验证[J]. 工程力学, 2011, 28(6):212-218. CHEN L, WU Z G, YANG C, et al. Gust response, load alleviation and wind-tunnel experiment verification of elastic wing[J]. Engineering Mechanics, 2011, 28(6):212-218(in Chinese).
[28] WU Z G, CHEN L, YANG C. Study on gust alleviation control and wind tunnel test[J]. Science China Technological Sciences, 2013, 56(3):762-771.
[29] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1):184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese).
[30] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2):81-86.
[31] BRITT R T, JACOBSON S B, ARTHURS T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft, 2000, 37(5):745-752.
[32] BURRIS P, BENDER M. Aircraft load alleviation and mode stabilization (LAMS) flight demonstration test analysis:AFFDL-TR-68-164[R]. Ohio:Air Force Flight Dynamics Laboratory, 1972.
[33] JOHNSTON J F, URIE D M. Development and flight evaluation of active controls in the L-1011[C]//Proceedings of CTOL Transport Technology Conference. Virginia:Langley Research Center, 1978:647-685.
[34] WILDSCHEK A, MAIER R, HAHN K U, et al. Flight test with an adaptive feed-forward controller for alleviation of turbulence excited wing bending vibrations[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2009.
[35] LI F, WANG Y Z, DA RONCH A. Flight testing an adaptive feedforward controller for gust loads alleviation on a flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2016.
[36] 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4):106-112, 121. YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator's dynamic characteristics[J]. Journal of Vibration and Shock, 2020, 39(4):106-112, 121(in Chinese).
[37] 黄诚惕. 希尔伯特-黄变换及其应用研究[D]. 成都:西南交通大学, 2006:78. HUANG C T. Study on Hilbert-Huang transform and its application[D]. Chengdu:Southwest Jiaotong University, 2006:78(in Chinese).
[38] BOUDRAA A O, CEXUS J C, SAIDI Z. EMD-based signal noise reduction[J]. International Journal of Signal Processing, 2004, 1(1):33-37.
Outlines

/