Swarm Intelligence and Cooperative Control

Design method of polygon formation for space-based gravitational-wave detection

  • LIU Peidong ,
  • JIAO Bohan ,
  • DANG Zhaohui
Expand
  • 1. School of Aerospace, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2022-01-07

  Revised date: 2022-02-17

  Online published: 2022-02-28

Supported by

National Natural Science Foundation of China (12172288);National Key Basic Research Program of China, Gravitational Wave Detection Project (2021YFC2202600,2021YFC2202603)

Abstract

Configuration design of spacecraft formations is the first problem to be faced in the study of spacecraft formation design. Based on a review of three typical triangular formation design scheme of space-based gravitational-wave detection mission, this paper extends the triangular formation design scheme to polygon formation design scheme, and gives a polygonal formation optical path design method for laser link path transit of gravitational-wave detectors. On this basis, a polygonal formation design method based on the combination of the Clohessy-Wiltshire equation and the cycle matching principle is given in this paper, including two new formation types: polygonal frame formation and polygonal grid formation. The results of the study can provide a theoretical basis for the design of formation configurations for a variety of space missions, including gravitational wave detection in the space. Simulations and analysis show that the change rate of formation arm length in this paper is stable enough, which shows that the proposed formation configuration design method is effective and has a good potential for engineering application.

Cite this article

LIU Peidong , JIAO Bohan , DANG Zhaohui . Design method of polygon formation for space-based gravitational-wave detection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S1) : 726907 -726907 . DOI: 10.7527/S1000-6893.2022.26907

References

[1] WUS F, WANG N, GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration, 2020, 7(2):118-127 (in Chinese). 吴树范, 王楠, 龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报, 2020, 7(2): 118-127.
[2] HUANG S L, GONG X F, XU P, et al. Gravitational wave detection in space—a new window in astronomy[J]. Sci Sin-Phys Mech Astron, 2017, 47:010404 (in Chinese). 黄双林, 龚雪飞, 徐鹏, 等. 空间引力波探测—天文学的一个新窗口. 中国科学: 物理学力学天文学, 2017, 47: 010404.
[3]
[4] NI W T. Gravitational wave detection in space[J]. International Journal of Modern Physics D, 2016, 25(14): 1630001.
[5] LUO Z R, BAI S, BIAN X, et al. Space laser interferometry gravitational wave detection[J]. Advances in Mechanics, 2013, 43(4): 415-447 (in Chinese). 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013,43(4): 415-447.
[6] LUO J, AI L H, AI Y L, et al. A brief introduction to the Tianqin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021,60(S1): 1-19 (in Chinese). 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(S1): 1-19.
[7] LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 (in Chinese). 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划” 及“太极1号” 在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10.
[8] DANZMANN K. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Classical & Quantum Gravity, 1996,13(11A): A247.
[9] BIK J, VISSER P, JENNRICH O. LISA satellite formation control[J]. Advances in Space Research, 2007, 40(1): 25-34.
[10] KAWAMURA S, NAKAMURA T, ANDO M. Space gravitational-wave antennas DECIGO and B-DECIGO[J]. International Journal of Modern Physics D, 2018, 28: 1845001.
[11] VINCENT M A, BENDER P L. The orbital mechanics of a space-borne gravitational wave experiment[J]. Astrodynamics 1987, 1988: 1346.
[12] BUCHMAN S, CONKLIN J W, BALAKRISHNAN K, et al. Lagrange: laser gravitational-wave antenna in geodetic orbit[J]. ASP Conference Series, 2012, 467: 191-195.
[13] MEN J R, NI W T, WANG G, et al. Orbit design of ASTROD-GW[J].Acta Astronomica Sinica, 2010, 51(2): 198-209 (in Chinese). 门金瑞, 倪维斗, 王刚. ASTROD-GW 轨道设计[J]. 天文学报, 2010,51(2): 198-209.
[14] NI W T. ASTROD and ASTROD I—overview and progress[J]. International Journal of Modern Physics D, 2008, 17(7): 921-940.
[15] ZHANG Y L, ZENG G Q, WANG Z K, et al. Theory and Applications of Distributed Satellite Systems[M]. Beijing: Science Press. 2007: 1-9(in Chinese). 张育林, 曾国强, 王兆魁, 等. 分布式卫星系统理论及应用[M]. 北京: 科学出版社. 2007: 1-9.
[16] LIU P D, DANG Z H. Triangular formation dynamics and optimal control for space-based gravitational-wave observatory[J]. Journal of Command and Control, 2021, 7(3): 275-286 (in Chinese). 刘培栋, 党朝辉. 空间引力波探测正三角形编队动力学机理与控制方法[J]. 指挥与控制学报, 2021, 7(3): 275-286.
[17] WANG J H, ZHANG J X, MENG Y H, et al. Review of formation dynamics and control technology of space-borne gravitational wave detection system[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 156-161(in Chinese). 王继河, 张锦绣, 孟云鹤, 等. 空间引力波探测系统编队动力学与控制技术综述[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 156-161.
[18] ZHANG X F, YE B B, TAN Z B, et al. Orbit and constellation design for Tianqin: progress review[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni. 2021, 60(1): 123-128 (in Chinese). 张雪峰, 叶伯兵, 檀庄斌, 等. 天琴轨道与星座设计进展[J]. 中山大学学报(自然科学版), 2021, 60(1): 123-128.
[19]
[20] CLOHESSY W H, WILTEHIRE R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658.
[21]
[22] LIU W, GAO Y. Drag-free control methods for space-based gravitational-wave detection[J]. Sci Sin-Phys Mech Astron, 2020, 50: 079503(in Chinese). 刘伟,高扬.空间引力波探测中无拖曳控制方法研究[J].中国科学:物理学 力学 天文学,2020,50(07):112-122.
[23] CORNISH N J, RUBBO L J. LISA response function[J]. Physical Review D, 2003, 67(2): 022001.
Outlines

/