ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Inverse design of pressure distribution for natural laminar flow nacelle considering 3D flow effects
Received date: 2021-12-27
Revised date: 2022-01-26
Accepted date: 2022-02-15
Online published: 2022-02-28
Supported by
National Level Project
An inverse design method of pressure distribution based on machine learning technology is developed aiming at the design difficulty of non-axisymmetric Natural Laminar Flow (NLF) nacelles under the three-dimensional flow effect. The Free Form Deformation (FFD) technology is used for the parametric modeling of the nacelle. Natural transition prediction is realized by solving the RANS equation and transition model
Hongyang LIU , Chao SONG , Xiao LUO , Zhu ZHOU , Guangliang LYU . Inverse design of pressure distribution for natural laminar flow nacelle considering 3D flow effects[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(5) : 126862 -126862 . DOI: 10.7527/S1000-6893.2022.26862
1 | REDEKER G, HORSTMANN K H, KOSTER H, et al. Investigations on high Reynolds number laminar flow airfoils[J]. Journal of Aircraft, 1988, 25(7): 583-590. |
2 | LIN Y J, ROBINSON T, EARLY J, et al. Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4): 824-835. |
3 | HOLMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces: NASA TP-2256[R]. Washington, D. C.: NASA, 1984. |
4 | YOUNGHANS J, LAHTI D. Analytical and experimental studies on natural laminar flow nacelles[C]∥ 22nd Aerospace Sciences Meeting. Reston: AIAA, 1984. |
5 | RADESPIEL R, HORSTMANN K H, REDEKER G. Feasibility study on the design of a laminar flow nacelle[J]. Journal of Aircraft, 1990, 27(11): 959-965. |
6 | RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1): 1-12. |
7 | VERMEERSCH O, BOUTEILLER X. Numerical study of laminar nacelles: natural and hybrid laminar flow designs[J]. International Journal of Engineering Systems Modelling and Simulation, 2014, 6(3/4): 191. |
8 | 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10): 2311-2320. |
HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10): 2311-2320 (in Chinese). | |
9 | LI S Y, ZHONG Y J. A turbofan-engine nacelle shape design and optimization method for natural laminar flow control[C]∥ Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016. |
10 | ZHONG Y J, LI S Y. A 3D shape design and optimization method for natural laminar flow nacelle[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017. |
11 | 杜玺, 闫海津, 吴宇昂, 等. 跨声速自然层流短舱气动设计和风洞试验研究[J]. 航空科学技术, 2019, 30(9): 63-72. |
DU X, YAN H J, WU Y A, et al. Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J]. Aeronautical Science & Technology, 2019, 30(9): 63-72 (in Chinese). | |
12 | WANG S Y, SUN G, LI C H. Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm[J]. Journal of Aerospace Engineering, 2019, 32(4): 06019001.1-06019001.10. |
13 | 孟晓轩, 白俊强, 张美红, 等. 基于双e N 方法的短舱层流转捩影响因素[J]. 航空学报, 2019, 40(11): 123040. |
MENG X X, BAI J Q, ZHANG M H, et al. Laminar transition influencing factors of nacelle based on double e N method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 123040 (in Chinese). | |
14 | 曹凡, 胡骁, 张美芳, 等. 高雷诺数下跨声速自然层流短舱优化设计[J]. 航空动力学报, 2021, 36(8): 1729-1739. |
CAO F, HU X, ZHANG M F, et al. Transonic natural laminar flow nacelle optimization design at high Reynolds number[J]. Journal of Aerospace Power, 2021, 36(8): 1729-1739 (in Chinese). | |
15 | 胡骁. 大涵道比发动机层流短舱优化设计及转捩不确定性研究[D]. 南京: 南京航空航天大学, 2020: 24-28. |
HU X. Optimization design and transition uncertainty of laminar flow nacelle with large bypass ratio engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 24-28 (in Chinese). | |
16 | BISHOP C M, SVENSéN M, WILLIAMS C K I. GTM: The generative topographic mapping[J]. Neural Computation, 1998, 10(1): 215-234. |
17 | KANEKO H. Sparse generative topographic mapping for both data visualization and clustering[J]. Journal of Chemical Information and Modeling, 2018, 58(12): 2528-2535. |
18 | 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000. |
ZHU X X. Free form deformation technology[M]. Beijing: Science Press, 2000 (in Chinese). | |
19 | LIU H Y, HUANG J T, ZHONG Q, et al. Hybrid unstructured mesh deformation based on massive parallel processors[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1398-1411. |
20 | MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—part I: Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413. |
21 | 乔磊, 白俊强, 华俊, 等. γ ? R e θ t ˉ 转捩模型的改进和验证[J]. 航空动力学报, 2015, 30(10): 2488-2497. |
QIAO L, BAI J Q, HUA J, et al. Improvement and verification of γ ? R e θ t ˉ transition model[J]. Journal of Aerospace Power, 2015, 30(10) :2488-2497 (in Chinese). | |
22 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
/
〈 |
|
〉 |