Articles

Verification method for natural laminar flow drag reduction and layout design of test section

  • ZHOU Zhenyao ,
  • LYU Fei ,
  • ZHOU Bin ,
  • YANG Zhao
Expand
  • 1. AVIC The First Aircraft Institute, Xi'an 710089, China;
    2. China Aviation Industry Shanxi Aircraft Industry (Group) Co. Ltd, Hanzhong 723213, China;
    3. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-12-06

  Revised date: 2022-01-13

  Online published: 2022-02-28

Abstract

Flight tests are effective in efficiency evaluation for the laminar flow design technology, while the layout parameters of the test wing section are the starting point for the aerodynamic design of unmanned demonstrators. This paper confirms the engineering value of "the same design lift coefficient method", and innovatively designs a comprehensive verification test system for drag reduction effect of natural laminar airfoils, including numerical simulation, wind tunnel tests and flight tests. On this basis, the preliminary scheme of the unmanned verification aircraft with 1 t twin-fuselage configuration is improved. The influence of crucial layout parameters such as chord length, span length, installation position and installation angle on the performance of flight tests and the aerodynamic characteristics of the test wing section are analyzed based on CFD. The wind tunnel test results show that the layout parameters of the demonstrator test wing section are reasonable, the longitudinal static stability of the demonstrator is moderate, and the test section can maintain a large range of stable two-dimensional flow area, thereby satisfying the flight test verification requirements.

Cite this article

ZHOU Zhenyao , LYU Fei , ZHOU Bin , YANG Zhao . Verification method for natural laminar flow drag reduction and layout design of test section[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526751 -526751 . DOI: 10.7527/S1000-6893.2022.26751

References

[1] 李凤蔚. 空气与气体动力学引论[M]. 西安:西北工业大学出版社, 2007. LI F W. Introduction to aerodynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2007(in Chinese).
[2] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[3] THIBERT J J, RENEAUX J, SCHMITT R V. Onera activities on drag reduction[C]//Proceedings of the 14th Congress of ICAS. Bonn:ICAS, 1990:1053-1064.
[4] HOLMES B, OBARA C J, MARTIN G L, et al. Manufacturing tolerances for natural laminar flow airframe surfaces:850863[S]. Warrendale:SAE, 1985.
[5] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[6] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[7] URBIN G, KNIGHT D. Large-eddy simulation of a supersonic boundary layer using an unstructured grid[J]. AIAA Journal, 2001, 39(7):1288-1295.
[8] SCHLATTER P, ÖRLV R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116-126.
[9] KRUMBEIN A, KRIMMELBEIN N, GRABE C. Streamline-based transition prediction techniques in an unstructured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5):1548-1564.
[10] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413.
[11] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[12] FUJINO M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[13] 乔志德. 翼型的选择与设计[M]//方宝瑞. 飞机气动布局设计. 北京:航空工业出版社, 1997:499-540. QIAO Z D. Design and chosen of the airfoils[M]//FANG B R. Aircraft aerodynamic configuration design. Beijing:Aviation Industry Press, 1997:499-540(in Chinese).
[14] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流翼型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B, et al. The transonic wind tunnel test research for the supercritical natural laminar airfoil NPU-L72513[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(2):40-45(in Chinese).
[15] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese).
[16] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese).
[17] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1624. XING Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1616-1624(in Chinese).
[18] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese).
[19] 李静, 刘艳萍, 高正红, 等. 跨音速自然层流翼型反设计研究[J]. 郑州大学学报(理学版), 2019, 51(1):95-100. LI J, LIU Y P, GAO Z H, et al. Inverse design of the transonic natural laminar flow airfoil[J]. Journal of Zhengzhou University (Natural Science Edition), 2019, 51(1):95-100(in Chinese).
[20] 陈永彬, 唐智礼, 盛建达. 跨音速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHEN Y B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese).
[21] 武宁, 唐鑫, 段卓毅, 等. 基于TSP方法的自然层流机翼转捩位置测量[J]. 实验流体力学, 2020, 34(6):66-70. WU N, TANG X, DUAN Z Y, et al. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6):66-70(in Chinese).
[22] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese).
[23] VAVRA A, SOLOMON W, DRAKE A. Comparison of boundary layer transition measurement techniques on a laminar flow wing[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005:1030.
[24] 胡成行, 黄叙辉, 李红梅, 等. 应用脉动压力测试技术探测边界层转捩[J]. 流体力学实验与测量, 2002, 16(2):67-71. HU C H, HUANG X H, LI H M, et al. The location of boundary-layer transition detected by pressure fluctuation measurements[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2):67-71(in Chinese).
[25] 董昊, 耿玺, 陆纪椿, 等. 翼型边界层转捩热/油膜及红外测量技术的对比[J]. 南京航空航天大学学报, 2013, 45(6):792-796. DONG H, GENG X, LU J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796(in Chinese).
[26] RICHTER K, SCHVLEIN E. Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography[J]. Experiments in Fluids, 2014, 55(7):1755.
[27] RAFFEL M, MERZ C B. Differential infrared thermography for unsteady boundary-layer transition measurements[J]. AIAA Journal, 2014, 52(9):2090-2093.
[28] 黄辉, 熊健, 刘祥, 等. 基于温敏漆的边界层转捩测量技术研究[J]. 实验流体力学, 2019, 33(2):79-84. HUANG H, XIONG J, LIU X, et al. Study of the boundary layer transition detection technique based on TSP[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):79-84(in Chinese).
Outlines

/