State of art and prospects of ground teleoperation technology for lunar rover

  • Weihua LI ,
  • Junlong GUO ,
  • Liang DING ,
  • Haibo GAO
Expand
  • 1.School of Automotive Engineering,Harbin Institute of Technology (Weihai),Weihai 264201,China
    2.School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China

Received date: 2021-09-07

  Revised date: 2021-10-09

  Accepted date: 2022-01-25

  Online published: 2022-02-28

Supported by

National Natural Science Foundation of China(52175007);China Postdoctoral Science Foundation(2018M630348);Self-Planned Task of State Key Laboratory of Robotics and System (HIT)(SKLRS202005B)

Abstract

This paper analyzes the ground teleoperation technology of the lunar rover under the conditions of big Earth-Moon communication time delay and complex lunar surface, and reviews the current situation and progress of the control technology or the remote control technology for lunar rovers successfully launched by the Soviet Union, the United States and China. To overcome the low efficiency induced by the “move-wait” teleoperation mode, the key technologies for continuous teleoperation of the lunar rover are analyzed. Existing technologies of the ground wheeled mobile manipulator for kinematic constraints, small time-delay and multi-degree of freedom mapping are summarized, including the communication time-delay and time-delay compensation strategy, the longitudinal/lateral sliding caused by the soft soil on the lunar surface, and the robot teleoperation theory. The ground teleoperation technology of the lunar rover in the future lunar exploration project is also discussed.

Cite this article

Weihua LI , Junlong GUO , Liang DING , Haibo GAO . State of art and prospects of ground teleoperation technology for lunar rover[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 26333 -026333 . DOI: 10.7527/S1000-6893.2022.26333

References

1 徐西宝, 白成超, 陈宇燊, 等. 月/火探测软着陆制导技术发展综述[J]. 宇航学报, 2020, 41(6): 719-729.
  XU X B, BAI C C, CHEN Y S, et al. A survey of guidance technology for moon/Mars soft landing[J]. Journal of Astronautics, 2020, 41(6): 719-729 (in Chinese).
2 李春来, 刘建军, 左维, 等. 中国月球探测进展(2011—2020年)[J]. 空间科学学报, 2021, 41(1): 68-75.
  LI C L, LIU J J, ZUO W, et al. Progress of China’s lunar exploration(2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 (in Chinese).
3 TEAM R. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner[J]. Science, 1997, 278(5344): 1765-1768.
4 HUNTRESS W T, MAROV M Y. Soviet robots in the solar system: Mission technologies and discoveries[M]. New York: Springer, 2011.
5 LI C L, WANG C, WEI Y, et al. China’s present and future lunar exploration program[J]. Science, 2019, 365(6450): 238-239.
6 吴伟仁, 于登云, 王赤, 等. 嫦娥四号工程的技术突破与科学进展[J]. 中国科学: 信息科学, 2020, 50(12): 1783-1797.
  WU W R, YU D Y, WANG C, et al. Technological breakthrough and scientific achievement of Chang’e-4 project[J]. Scientia Sinica (Informationis), 2020, 50(12): 1783-1797 (in Chinese).
7 PEI Z Y, REN J J, PENG J, et al. Overall scheme trade-off design of Chang’E-5 mission[J]. Journal of Deep Space Exploration, 2021, 8(3): 215-226.
8 BASILEVSKY A T, KRESLAVSKY M A, KARACHEVTSEVA I P, et al. Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas[J]. Planetary and Space Science, 2014, 92: 77-87.
9 MALENKOV M. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes[J]. Frontiers of Mechanical Engineering, 2016, 11(1): 60-86.
10 杨成, 宋军, 孙军, 等. 月球车实时遥操作方法研究[J]. 中国科学: 信息科学, 2014, 44(4): 461-472.
  YANG C, SONG J, SUN J, et al. On real-time teleoperation of lunar rover[J]. Scientia Sinica (Informationis), 2014, 44(4): 461-472 (in Chinese).
11 吴伟仁, 周建亮, 王保丰, 等. 嫦娥三号“玉兔号”巡视器遥操作中的关键技术[J]. 中国科学: 信息科学, 2014, 44(4): 425-440.
  WU W R, ZHOU J L, WANG B F, et al. Key technologies in the teleoperation of Chang’E-3 “Jade Rabbit” rover[J]. Scientia Sinica (Informationis), 2014, 44(4): 425-440 (in Chinese).
12 张立宪, 肖广洲, 王东哲, 等. 在轨对星球表面遥操作技术现状与展望[J]. 中国科学: 技术科学, 2020, 50(6): 716-728.
  ZHANG L X, XIAO G Z, WANG D Z, et al. Review and prospects of orbit-to-surface teleoperation[J]. Scientia Sinica (Technologica), 2020, 50(6): 716-728 (in Chinese).
13 LII N Y, LEIDNER D, BIRKENKAMPF P, et al. Toward scalable intuitive telecommand of robots for space deployment with the METERON SUPVIS Justin experiment [C]∥The 14th Symposium on Advanced Space Technologies for Robotics and Automation. Leiden: European Space Agency, 2017.
14 BURNS J O, MELLINKOFF B, SPYDELL M, et al. Science on the lunar surface facilitated by low latency telerobotics from a Lunar Orbital Platform-Gateway[J]. Acta Astronautica, 2019, 154: 195-203.
15 WEBER B, BALACHANDRAN R, RIECKE C, et al. Teleoperating robots from the international space station: Microgravity effects on performance with force feedback[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 8144-8150.
16 李卫华. 轮式移动机器人滑转率预测及遥操作技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
  LI W H. Research on slippage prediction and teleoperation of wheeled mobile robots[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
17 LI W H, DING L, LIU Z, et al. Kinematic bilateral teledriving of wheeled mobile robots coupled with slippage[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2147-2157.
18 LEE D J, MARTINEZ-PALAFOX O, SPONG M W. Bilateral teleoperation of a wheeled mobile robot over delayed communication network[C]∥Proceedings 2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 3298-3303.
19 李振才. 松软地形下六轮星球车运动建模及跟踪控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
  LI Z C. Research on motion modelling and tracking control of six-wheeled planetary rover on soft terrain[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
20 LUO J, LIN Z D, LI Y N, et al. A teleoperation framework for mobile robots based on shared control[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 377-384.
21 QUANG H V, FARKHATDINOV I, RYU J H. Passivity of delayed bilateral teleoperation of mobile robots with ambiguous causalities: Time domain passivity approach[C]∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2012: 2635-2640.
22 MALYSZ P, SIROUSPOUR S. A task-space weighting matrix approach to semi-autonomous teleoperation control[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 645-652.
23 YUAN W, LI Z J. Brain teleoperation control of a nonholonomic mobile robot using quadrupole potential function[J]. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11(4): 527-538.
24 赵素娜. 脑控非完整移动机器人方法研究[D]. 广州: 华南理工大学, 2017.
  ZHAO S N. Studies on brain-actuated methods for nonholonomic mobile robots[D]. Guangzhou: South China University of Technology, 2017 (in Chinese).
25 LI W H, LIU Z, GAO H B, et al. Stable kinematic teleoperation of wheeled mobile robots with slippage using time-domain passivity control[J]. Mechatronics, 2016, 39: 196-203.
26 HUANG Y J, DING H T, ZHANG Y B, et al. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1376-1386.
27 马小陆, 梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J]. 机械工程学报, 2021, 57(1): 19-27.
  MA X L, MEI H. Mobile robot global path planning based on improved ant colony system algorithm with potential field[J]. Journal of Mechanical Engineering, 2021, 57(1): 19-27 (in Chinese).
28 DU G L, HAN R G, YAO G C, et al. A gesture- and speech-guided robot teleoperation method based on mobile interaction with unrestricted force feedback[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1): 360-371.
29 袁祖龙, 李会军, 宋爱国, 等. 基于视觉/力觉辅助的遥操作系统研究与实现[J]. 测控技术, 2018, 37(6): 112-116.
  YUAN Z L, LI H J, SONG A G, et al. Research and implementation of teleoperation system based on visual-haptic aid[J]. Measurement & Control Technology, 2018, 37(6): 112-116 (in Chinese).
30 FRANCHI A, SECCHI C, SON H I, et al. Bilateral teleoperation of groups of mobile robots with time-varying topology[J]. IEEE Transactions on Robotics, 2012, 28(5): 1019-1033.
31 张颖, 宋光明, 孙慧玉, 等. 多移动机器人双边遥操作系统中反馈力信息设计与研究[J]. 东南大学学报(自然科学版), 2017, 47(1): 50-55.
  ZHANG Y, SONG G M, SUN H Y, et al. Design and research on feedback force in bilateral teleoperation system for multiple mobile robots[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1): 50-55 (in Chinese).
32 QIU Y, LI B Q, SHI W X, et al. Visual servo tracking of wheeled mobile robots with unknown extrinsic parameters[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8600-8609.
33 CUI M Y, HUANG R J, LIU H Z, et al. Adaptive tracking control of wheeled mobile robots with unknown longitudinal and lateral slipping parameters[J]. Nonlinear Dynamics, 2014, 78(3): 1811-1826.
34 冷舒, 居鹤华. 行星车动力学建模及解算方法综述[J]. 清华大学学报(自然科学版), 2019, 59(9): 689-698.
  LENG S, JU H H. Review of rover dynamics modeling methods[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(9): 689-698 (in Chinese).
35 LEHNER P, BRUNNER S, D?MEL A, et al. Mobile manipulation for planetary exploration[C]∥2018 IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-11.
36 PEPE A, CHIARAVALLI D, MELCHIORRI C. A hybrid teleoperation control scheme for a single-arm mobile manipulator with omnidirectional wheels[C]∥2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2016: 1450-1455.
37 GARCIA M A R, ROJAS R A, PIRRI F. Object-centered teleoperation of mobile manipulators with remote center of motion constraint[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1745-1752.
38 WU Y Q, BALATTI P, LORENZINI M, et al. A teleoperation interface for loco-manipulation control of mobile collaborative robotic assistant[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3593-3600.
39 MALYSZ P, SIROUSPOUR S. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators[J]. IEEE Transactions on Haptics, 2013, 6(4): 484-495.
40 ZHAI D H, XIA Y Q. Adaptive fuzzy control of multilateral asymmetric teleoperation for coordinated multiple mobile manipulators[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(1): 57-70.
41 SHAHBAZI M, ATASHZAR S F, PATEL R V. A systematic review of multilateral teleoperation systems[J]. IEEE Transactions on Haptics, 2018, 11(3): 338-356.
42 李文皓, 张珩, 冯冠华. 复杂大时延的多主多从共享遥操作方法[J]. 航空学报, 2021, 42(1): 523896.
  LI W H, ZHANG H, FENG G H. Cooperative teleoperation for multi-master/multi-slave systems with large time-varying delays[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523896 (in Chinese).
43 ISHIGAMI G, MIWA A, NAGATANI K, et al. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil[J]. Journal of Field Robotics, 2007, 24(3): 233-250.
44 GUO J L, LI W H, DING L, et al. Linear expressions of drawbar pull and driving torque for grouser-wheeled planetary rovers without terrain mechanical parameters[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8197-8204.
45 OLSON C F, MATTHIES L H, SCHOPPERS M, et al. Rover navigation using stereo ego-motion[J]. Robotics and Autonomous Systems, 2003, 43(4): 215-229.
46 ANDERSON R J, SPONG M W. Bilateral control of teleoperators with time delay[J]. IEEE Transactions on Automatic Control, 1989, 34(5): 494-501.
47 NIEMEYER G, SLOTINE J J E. Telemanipulation with time delays[J]. The International Journal of Robotics Research, 2004, 23(9): 873-890.
48 PITAKWATCHARA P. Wave correction scheme for task space control of time-varying delayed teleoperation systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2223-2231.
49 吴超, 宋荆洲. 基于波变量的时域无源双边遥操作控制方法研究[J]. 载人航天, 2020, 26(6): 767-776, 782.
  WU C, SONG J Z. Research on time domain passive bilateral teleoperation control method based on wave variable[J]. Manned Spaceflight, 2020, 26(6): 767-776, 782 (in Chinese).
50 HANNAFORD B. A design framework for teleoperators with kinesthetic feedback[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4): 426-434.
51 TSUMAKI Y, UCHIYAMA M. Predictive display of virtual beam for space teleoperation[C]∥Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 1996: 1544-1549.
52 SMITH C, JENSFELT P. A predictor for operator input for time-delayed teleoperation[J]. Mechatronics, 2010, 20(7): 778-786.
53 张波, 李海阳, 唐国金. 环月轨道遥操作交会对接预测共享控制[J]. 宇航学报, 2014, 35(3): 315-323.
  ZHANG B, LI H Y, TANG G J. Predictive shared control of teleoperation rendezvous and docking in lunar orbit[J]. Journal of Astronautics, 2014, 35(3): 315-323 (in Chinese).
54 HIRZINGER G, LANDZETTEL K, FAGERER C. Telerobotics with large time delays-the ROTEX experience[C]∥Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94). Piscataway: IEEE Press, 1994: 571-578.
55 倪得晶, 宋爱国, 李会军. 基于虚拟现实的机器人遥操作关键技术研究[J]. 仪器仪表学报, 2017, 38(10): 2351-2363.
  NI D J, SONG A G, LI H J. Survey on robot teleoperation based on virtual reality[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2351-2363 (in Chinese).
56 HADDADI A, HASHTRUDI-ZAAD K. Real-time identification of hunt-crossley dynamic models of contact environments[J]. IEEE Transactions on Robotics, 2012, 28(3): 555-566.
57 倪得晶. 面向空间机器人遥操作的环境建模与人机交互技术研究[D]. 南京: 东南大学, 2018.
  NI D J. Research on technology of environment modelling and human-robot interaction for space robot teleoperation[D]. Nanjing: Southeast University, 2018 (in Chinese).
58 WALACH E, WIDROW B. The least mean fourth (LMF) adaptive algorithm and its family[J]. IEEE Transactions on Information Theory, 1984, 30(2): 275-283.
59 YAMAMOTO T, BERNHARDT M, PEER A, et al. Techniques for environment parameter estimation during telemanipulation[C]∥2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway: IEEE Press, 2008: 217-223.
60 SERAJI H, COLBAUGH R. Force tracking in impedance control[J]. International Journal of Robotics Research, 1997, 16(1): 97-117.
61 DIOLAITI N, MELCHIORRI C, STRAMIGIOLI S. Contact impedance estimation for robotic systems[J]. IEEE Transactions on Robotics, 2005, 21(5): 925-935.
62 GAO H B, LI W H, DING L, et al. A method for on-line soil parameters modification to planetary rover simulation[J]. Journal of Terramechanics, 2012, 49(6): 325-339.
63 SU H, QI W, YANG C G, et al. Deep neural network approach in robot tool dynamics identification for bilateral teleoperation[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2943-2949.
64 BEKKER M G. Introduction to terrain-vehicle systems[M]. Ann Arbor: University of Michigan Press, 1969
65 JANOSI Z, HANAMOTO B. Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]∥Proceedings of the 1st International Conference of ISTVES, 1961: 707-726.
66 SENATORE C, IAGNEMMA K. Analysis of stress distributions under lightweight wheeled vehicles[J]. Journal of Terramechanics, 2014, 51: 1-17.
67 AGARWAL S, SENATORE C, ZHANG T N, et al. Modeling of the interaction of rigid wheels with dry granular media[J]. Journal of Terramechanics, 2019, 85: 1-14.
68 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
  DING L. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers: Modeling and application[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese).
69 SOHL G, JAIN A. Wheel-terrain contact modeling in the ROAMS planetary rover simulation[C]∥Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2008: 89-97.
70 PATEL N, ELLERY A, ALLOUIS E, et al. Rover mobility performance evaluation tool (RMPET): A systematic tool for rover chassis evaluation via application of bekker theory [C]∥The 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk: European Space Agency, 2004: 1-9.
71 陈百超. 月球车新型移动系统设计[D]. 长春: 吉林大学, 2009.
  CHEN B C. Design of a new locomotion system for lunar rover[D]. Changchun: Jilin University, 2009 (in Chinese).
72 LI W H, DING L, GAO H B, et al. ROSTDyn: Rover simulation based on terramechanics and dynamics[J]. Journal of Terramechanics, 2013, 50(3): 199-210.
73 IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5): 921-927.
74 HUTANGKABODEE S, ZWEIRI Y H, SENEVIRATNE L D, et al. Performance prediction of a wheeled vehicle on unknown terrain using identified soil parameters[C]∥Proceedings 2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 3356-3361.
75 DING L, YOSHIDA K, NAGATANI K, et al. Parameter identification for planetary soil based on a decoupled analytical wheel-soil interaction terramechanics model[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2009: 4122-4127.
76 LI W H, LIU Z, GAO H B, et al. Soil parameter modification used for boosting predictive fidelity of planetary rover’s slippage[J]. Journal of Terramechanics, 2014, 56: 173-184.
77 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.
  TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18 (in Chinese).
78 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 023615.
  MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023615 (in Chinese).
79 赵正旭. 非可及环境的镜像孪生与实时可视化遥操控[J]. 青岛理工大学学报, 2020, 41(6): 1-16, 60.
  ZHAO Z X. Twin imaging and real-time visualized remote manipulating in inaccessible environments[J]. Journal of Qingdao University of Technology, 2020, 41(6): 1-16, 60 (in Chinese).
80 金晟毅, 李海飞, 彭松, 等. 嫦娥四号巡视器遥操作地面支持系统设计[J]. 航天器工程, 2019, 28(4): 116-124.
  JIN S Y, LI H F, PENG S, et al. Design of tele-operation ground support system for Chang’e-4 rover[J]. Spacecraft Engineering, 2019, 28(4): 116-124 (in Chinese).
81 金晟毅, 邓湘金, 郑燕红, 等. 月面采样封装操控系统方案设计与实现[J]. 中国科学: 技术科学, 2021, 51(8): 912-920.
  JIN S Y, DENG X J, ZHENG Y H, et al. Design and implementation of an operation system for lunar surface soil sampling & encapsulation[J]. Scientia Sinica (Technologica), 2021, 51(8): 912-920 (in Chinese).
82 刘潇翔, 汤亮, 曾海波, 等. 航天控制系统基于数字孪生的智慧设计仿真[J]. 系统仿真学报, 2019, 31(3): 377-384.
  LIU X X, TANG L, ZENG H B, et al. Smart design and simulation of aerospace control system based on digital twin[J]. Journal of System Simulation, 2019, 31(3): 377-384 (in Chinese).
83 LI W H, GAO H B, DING L, et al. Trilateral predictor-mediated teleoperation of a wheeled mobile robot with slippage[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 738-745.
84 LI W H, YANG N, WANG J F, et al. Kinematic teleoperation of wheeled mobile robot with slippage compensation on soft terrains[J]. IEEE Access, 2019,7: 110982-110991.
85 LI W H, GUO J L, DING L, et al. Slippage-dependent teleoperation of wheeled mobile robots on soft terrains[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4962-4969.
86 LI W H, LI Z C, LIU Y Q, et al. Semi-autonomous bilateral teleoperation of six-wheeled mobile robot on soft terrains[J]. Mechanical Systems and Signal Processing, 2019, 133: 106234.
87 梁振杰, 江磊, 苏波, 等. 人机共融机器人的月面驻留服务及应用展望[J]. 载人航天, 2019, 25(5): 680-687.
  LIANG Z J, JIANG L, SU B, et al. Lunar residence service and application prospect of tri-Co robot[J]. Manned Spaceflight, 2019, 25(5): 680-687 (in Chinese).
Outlines

/