Articles

Residual strength evaluation of curved hat-stiffened composite panels with discrete-source damage

  • WANG Houbing ,
  • WANG Xiahan ,
  • LIN Guowei ,
  • LI Xinxiang ,
  • YANG Shengchun
Expand
  • Aeronautics Science and Technology Key Laboratory of Full Scale Aircraft Structure Statics and Fatigue, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-06-01

  Revised date: 2022-03-01

  Online published: 2022-02-28

Supported by

Civil Aircraft Scientific Research Project (MJ-2015-F-038)

Abstract

Experiments and analysis on curved hat-stiffened composite panels with 7 stringers and 4 frames are conducted to investigate the residual strength of panels with discrete-source damage under combined internal pressure and axial compression. The research indicates that axial strain of stringers and skin is equal more than one stringer spacing from discrete-source damage, stress is redistributed near discrete-source damage, stress concentration reduces, and discrete-source damage can be simplified as a round hole. The research also proved that the method based on FD criterion and the classical laminate theory can be used to predict the residual strength of curved hat-stiffened composite panels with discrete-source damage under combined internal pressure and axial compression. An empirical method was proposed to estimate the residual strength of the curved hat-stiffened composite panels with discrete-source damage under combined internal pressure and axial compression based on the structural characteristics, strain distribution and failure mode. The calculated results are in good agreement with the experimental results.

Cite this article

WANG Houbing , WANG Xiahan , LIN Guowei , LI Xinxiang , YANG Shengchun . Residual strength evaluation of curved hat-stiffened composite panels with discrete-source damage[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 525899 -525899 . DOI: 10.7527/S1000-6893.2022.25899

References

[1] Federal Aviation Administration, Department of Transportation. AC20-107B Subject:Composite aircraft structure, advisory circular[S]. Washington D.C.:Federal Aviation Administration, Department of Transportation, 2009:12-14.
[2] 矫桂琼,杜凯,杨成鹏,等.含离散源损伤复合材料加筋板的压缩特性[J]. 航空学报,2007, 28(6):1383-1388. JIAO G Q, DU K, YANG C P, et al. Compressive properties of stiffened composite panels with discrete-source damage[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1383-1388(in Chinese).
[3] 杜凯, 矫桂琼,王翔.含离散源损伤复合材料加筋板的拉伸特性[J]. 复合材料学报,2008, 25(4):181-186. DU K, JIAO G Q, WANG X. Tensile properties of stiffened composite panels with discrete-source damage[J]. Acta Materiae Compositae Sinica, 2008, 25(4):181-186(in Chinese).
[4] WALKER T H, MINGUET P J, FLYNN B W, et al. Advanced technology composite fuselage-structure performance:NASA CR-4732[R]. Washington, D.C.:NASA,1997.
[5] WANG J, LOTTS C, SLEIGHT D. Analysis of discrete-source damage progression in a tensile stiffened composite panel[C]//40th Structures, Structural Dynamics, and Materials Conference and Exhibit, 1999.
[6] ALEX V. Designing primary structures with stitched composites[C]//31 st Congress of the International Council of the Aeronautical Sciences, 2018.
[7] ANDREW B, JOHN G B J, ANDREW L, et al. Full-scale test and analysis results of a PRSEUS fuselage panel to assess damage containment features[C]//Aircraft Airworthiness & Sustainment Conference, 2012.
[8] XU X D, TAKEDA S I, AOKI Y, et al. Predicting notched tensile strength of full-scale composite structures from small coupons using fracture mechanics[J]. Composite Structures, 2017, 180:386-394.
[9] WANG J T, POE C C, AMBUR D R, et al. Residual strength prediction of damaged composite fuselage panel with R-curve method[J]. Composites Science and Technology, 2006, 66(14):2557-2565.
[10] LIANG L, JIA P R, JIAO G Q. Progressive failure study of discrete-source damage in stiffened composite panels[J]. Advanced Materials Research, 2011, 314-316:963-967.
[11] 李亮. 含离散源损伤复合材料结构失效行为研究[D]. 西安:西北工业大学, 2016:123-148. LI L. Failure behavior investigation of the composite structures with discrete resource damage[D]. Xi'an:Northwestern Polytechnical University, 2016:123-148(in Chinese).
[12] 李航,矫桂琼,王波. 含离散源损伤Z向增强复合材料加筋板压缩特性研究[J]. 机械强度,2012, 34(1):37-42. LI H,JIAO G Q,WANG B. Study on compressive properties of z-reinforced stiffened composite plate with discrete-source damage[J]. Journal of Mechanical Strength, 2012, 34(1):37-42(in Chinese).
[13] 李航,矫桂琼,赵龙,等. 含切口复合材料加筋板的压缩剩余强度研究[J]. 工程力学,2011, 28(8):133-137. LI H,JIAO G Q,ZHAO L, et al. Progressive failure analysis of stiffened composite plate with notch[J]. Engineering Mechanics, 2011, 28(8):133-137(in Chinese).
[14] 陈向明,张阿盈,柴亚南,等. 复合材料机翼壁板离散源损伤修理评估方法[J]. 机械强度,2017, 39(2):457-462. CHEN X M, ZHANG A Y, CHAI Y N, et al. Assessment method of the repaired aircraft composite wing panel with discrete-source damage[J]. Journal of Mechanical Strength,2017, 39(2):457-462(in Chinese).
[15] 陈向明,张阿盈,柴亚南,等. 复合材料机翼壁板离散源损伤修理技术研究[J]. 机械强度,2017, 39(3):551-556. CHEN X M, ZHANG A Y, CHAI Y N, et al. Investigation of repair technique for aircraft composite wing panel with discrete-source damage[J]. Journal of Mechanical Strength,2017,39(3):551-556(in Chinese).
[16] 陈向明,张阿盈,王力立,等. 复合材料加筋壁板修理后压缩性能试验研究[J]. 工程与试验,2017,57(1):9-13. CHEN X M, ZHANG A Y,WANG L L, et al. Experimental research on compression performance of repaired composite stiffened panel[J]. Engineering & Test, 2017, 57(1):9-13(in Chinese).
[17] 张阿盈,陈向明,王力立. 含离散源损伤复合材料加筋板剩余强度及其修理技术研究[J]. 工程与试验,2018,58(2):16-19. ZHANG A Y,CHEN X M, WANG L L. Study on residual strength of composite stiffened panel with discrete source damage and repair technique[J]. Engineering & Test, 2018,58(2):16-19(in Chinese).
[18] WHITNEY J M, NUISMER R J. Stress fracture criteria for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1974, 8(3):253-265.
[19] NUISMER R, WHITNEY J. Uniaxial failure of composite laminates containing stress concentrations[J]. Fracture Mechanics of composites, 1975, 9:117-142.
[20] VAIDYA R S, SUN C T. Fracture criterion for notched thin composite laminates[J]. AIAA Journal, 1997, 35(2):311-316.
[21] CHEN P H,SHEN Z,WANG J Y. A new method for compression after impact strength prediction of composite laminates[J]. Journal of Composite Materials, 2002, 36(5):589-610.
[22] 中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社,2001:365-390. Institute of Aeronautics China. Handbook of composites structure design[M]. Beijing:Aviation Industry Press, 2001:365-390(in Chinese).
[23] 李仲,葛森,杨胜春,等. 含损伤缝合复合材料层压板压缩剩余强度估算方法[J]. 西北工业大学学报,2007,25(3):342-346. LI Z, GE S, YANG S C, et al. Prediction of compressive residual strength for stitched composite laminates with damage[J]. Journal of Northwestern Polytechnical University, 2007,25(3):342-346(in Chinese).
[24] 汪厚冰,李新祥,魏景超,等. 复合材料曲面帽形加筋壁板在内压-轴压联合载荷下的屈曲及承载性能[J]. 航空制造技术,2020,63(18):55-64. WANG H B, LI X X, WEI J C, et al. Buckling and post-buckling of curved hat-stiffened composite panels under combined internal pressure and axial compression[J]. Aeronautical Manufacturing Technology, 2020,63(18):55-64(in Chinese).
[25] 魏宏艳. 应力集中方法试验:AA-623S-2018-101-0025[R]. 西安:中国飞机强度研究所技术报告,2018. WEI H Y. Supplementary test report of stress concentration:AA-623S-2018-101-0025[R].Xi'an:Aircraft strength Research Institute of China, 2018(in Chinese).
[26] 邓凡臣. 应力集中方法补充试验报告:43-623S-2020-101-0015[R]. 西安:中国飞机强度研究所技术报告,2018. DENG F C. Test report of stress concentration, ASRI,43-623S-2020-101-0015[R]. Xi'an:Aircraft strength Research Institute of China, 2020(in Chinese).
[27] 汪厚冰,陈昊,雷安民,等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报,2018,35(8):2014-2022. WANG H B,CHEN H,LEI A M,et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compression load[J]. Acta Materiae Compositae Sinica, 2018,35(8):2014-2022(in Chinese).
Outlines

/