Solid Mechanics and Vehicle Conceptual Design

Influence of ‘windows’ structure on inflation process of ringsail parachute

  • Wenlong BAO ,
  • He JIA ,
  • Xiaopeng XUE ,
  • Xuejiao HUANG ,
  • Shuyi GAO ,
  • Wei RONG ,
  • Qi WANG ,
  • Zhuangzhi WU
Expand
  • 1.Beijing Institute of Space Mechanics and Electricity,Beijing 100094,China
    2.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.School of Aeronautics and Astronautics,Central South University,Changsha 410083,China
    4.School of Computer Science and Engineering,Beihang University,Beijing 100191,China
E-mail: chinajiah@163.com

Received date: 2022-01-11

  Revised date: 2022-02-16

  Accepted date: 2022-02-17

  Online published: 2022-02-18

Supported by

National Natural Science Foundation of China(11972192);Research Fund of Ministry of Industry and Information Technology Key Laboratory of Aircraft Environment Control and Life Support(KLAECLS-E-202004)

Abstract

With increasing load weight, the inability of single parachutes to ensure safe landing of heavy reentry capsules diverts extensive attention to the cluster parachute system which has been successfully applied. However, the interference between the parachutes poses challenges to the cluster parachute design. The new generation of crewed spacecraft has attempted to solve this problem from the perspective of porosity. Due to the difficulty in simulating the inflation process of the cluster parachute, this paper adopts the Fluid-Structure Interaction (FSI) numerical method to conduct numerical simulation of the inflation process of single ringsail parachutes with different porosities without changing the configuration design of the canopy to investigate the influence of the ‘windows’ structure on aerodynamic performance. The result demonstrates that the ‘windows’ structure has minor influence on the shape change during the inflation process of the ringsail parachute, with the ratio change of the projected area to the nominal area before and after using the ‘windows’ structure no more than 15%. For different ‘windows’ positions and quantities, the best choice to balance the average drag coefficient, opening load, and fluctuation of the drag coefficient is sail position 5 and quantity 25%. The maximum swing angle is reduced by at least 5 °after using the ‘windows’ structure, and the reduction will increase with the grow in the number of ‘windows’; however, no clear patterns between the positions of the ‘windows’ is observed.

Cite this article

Wenlong BAO , He JIA , Xiaopeng XUE , Xuejiao HUANG , Shuyi GAO , Wei RONG , Qi WANG , Zhuangzhi WU . Influence of ‘windows’ structure on inflation process of ringsail parachute[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(5) : 226936 -226936 . DOI: 10.7527/S1000-6893.2022.26936

References

1 余莉. 气动减速技术[M]. 北京: 科学出版社, 2018.
  YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018 (in Chinese).
2 荣伟. 航天器进入下降与着陆技术[M]. 北京: 北京理工大学出版社, 2018.
  RONG W. Spacecraft entry, descent and landing technology[M]. Beijing: Beijing Institute of Technology Press, 2018 (in Chinese).
3 贾华明, 杨霞, 李少腾, 等. 环帆伞技术与发展综述[J]. 航天返回与遥感202142(3): 41-51.
  JIA H M, YANG X, LI S T, et al. Overview of the technology and development of ringsail parachute[J]. Spacecraft Recovery & Remote Sensing202142(3): 41-51 (in Chinese).
4 EWING E G, VICKERS J R. Ringsail parachute design: AFFDL-TR-72-3[R]. Northrop Corporation, 1972.
5 TEZDUYAR T, SATHE S, PAUSEWANG J, et al. Air-fabric interaction modeling with the stabilized space-time FSI technique[C]∥The third Asian-Pacific Congress on Computational Mechanics. Kyoto: APCOM, 2007.
6 TAKIZAWA K, MOORMAN C, WRIGHT S, et al. Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes[J]. International Journal for Numerical Methods in Fluids201165(1-3): 271-285.
7 GREATHOUSE J, SCHWING A. Study of geometric porosity on static stability and drag using computational fluid dynamics for rigid parachute shapes: AIAA-2015-2131[R]. Reston: AIAA, 2015.
8 甘小娇. 环帆伞结构透气量对气动性能的影响[D]. 南京: 南京航空航天大学, 2015: 25-38.
  GAN X J. Effect of ringsail parachute structure permeability on aerodynamic performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 25-38 (in Chinese).
9 高畅, 余莉, 张思宇. 环片数量对环帆伞气动性能的影响[J]. 海军航空工程学院学报202035(4): 297-302.
  GAO C, YU L, ZHANG S Y. The influence of the number of rings on the aerodynamic performance of the ringsail parachute[J]. Journal of Naval Aeronautical and Astronautical University202035(4): 297-302 (in Chinese).
10 甘和麟. 环帆伞阻力特性及其尺寸效应的研究[D]. 北京: 中国空间技术研究院, 2014: 56-58.
  GAN H L. Analysis of ringsail drag characteristics and scale effects[D]. Beijing: China Academy of Space Technology, 2014: 56-58 (in Chinese).
11 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报201533(5): 714-719.
  YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica201533(5): 714-719 (in Chinese).
12 尚小娟, 童明波, 张红英. 带牵顶伞的大面积环帆伞充气性能分析[J]. 航天返回与遥感201031(4): 21-26.
  SHANG X J, TONG M B, ZHANG H Y. Performance analysis for inflation of large ringsail parachute with an apex grogue[J]. Spacecraft Recovery & Remote Sensing201031(4): 21-26 (in Chinese).
13 程涵, 余莉, 夏刚. 降落伞充气过程中“瓶颈”效应[J]. 国防科技大学学报201335(1): 48-52.
  CHENG H, YU L, XIA G. A study on “bottleneck” phenomenon during parachute inflation[J]. Journal of National University of Defense Technology201335(1): 48-52 (in Chinese).
14 ANDERSON B P, GREATHOUSE J, POWELL J, et al. Sub-scale orion parachute test results from the national full-scale aerodynamics complex 80-by 120-ft wind tunnel:JSC-CN-39271[R]. Washington.D.C.: NASA, 2017.
15 DAUM J S, PETERSEN M L. Orion capsule parachute assembly system(CPAS) overload testing approach and results: AIAA-2019-3142[R]. Reston: AIAA, 2019.
16 方世兴, 黄伟, 荣伟. 盘缝带伞细化结构的仿真影响研究[J]. 航天返回与遥感201738(2): 17-26.
  FANG S X, HUANG W, RONG W. Study on the detailed structure of disk-gap-band parachute simulation[J]. Spacecraft Recovery & Remote Sensing201738(2): 17-26 (in Chinese).
17 贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感200930(1): 15-20.
  JIA H, RONG W, CHEN G L. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery & Remote Sensing200930(1): 15-20 (in Chinese).
18 YANG X, YU L, NIE S C, et al. Aerodynamic performance of the supersonic parachute with material permeability[J]. Journal of Industrial Textiles202150(6): 812-829.
19 BENSON D J. Computational methods in lagrangian and eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering199299: 235-394.
20 ERGUN S. Fluid flow through packed columns[J]. Journal of Materials Science and Chemical Engineering195248(2): 89-94.
21 张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报202046(6): 1108-1115.
  ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics202046(6): 1108-1115 (in Chinese).
22 王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报202043(6): 21-29.
  WANG M Z, CAO D F, WU B, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University202043(6): 21-29 (in Chinese).
23 HUGHES T J R, LIU W K, ZIMMERMAN T K. Lagrangian-eulerian finite element formulation for viscous flows[J]. Computer Methods in Applied Mechanics and Engineering198129: 329-349.
24 赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003: 164.
  ZHAO H O. Guide to dynamic analysis of LS-DYNA[M]. Beijing: The Publishing House of Ordnance Industry, 2003: 164 (in Chinese).
25 JASON W, NICOLAS A, BENJAMIN T, et al. Porous euler-lagrange coupling application to parachute dynamics[C]∥The 9th International LS-DYNA Users Conference, 2005.
26 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997.
  WANG L R. Parachute theory and application[M].Beijing: Astronautic Publishing House, 1997 (in Chinese).
Outlines

/