Reviews

Application progress of power beam processing technology in aeronautical industry

  • LI Zhiqiang ,
  • CHEN Wei
Expand
  • 1. AVIC Manufacturing Technology Institute, Beijing 100024, China;
    2. Key Laboratory of Power Beam Processing, Beijing 100024, China

Received date: 2021-12-31

  Revised date: 2022-01-15

  Online published: 2022-02-18

Abstract

Power beam (laser/electron beam) processing is an indispensable technology in the aeronautical industry, and is also the frontier of advanced manufacturing research. This paper introduces welding, additive manufacturing, surface modification using laser/electron beam. Laser/electron beam welding help achieve the integration of aircraft fuselage and aeroengine structure. Laser/electron beam additive manufacturing is used in the rapid manufacturing of complicated structure and repairing of engine blades. In the area of surface modification, laser peening greatly improves structure fatigue life; ultra-fast laser has made hole-drilling on turbine blades and nano-scale surface structure possible. Bonding strength between metal-composite is significantly enhanced when electron beam sufi-sculpt is applied on metal surface. In the final section, the future development of power beam processing technology is also discussed based on new materials, new structures, and process monitoring.

Cite this article

LI Zhiqiang , CHEN Wei . Application progress of power beam processing technology in aeronautical industry[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 526882 -526882 . DOI: 10.7527/S1000-6893.2022.26882

References

[1] 关桥, 邵亦陈. 航空特种焊接/连接技术体系的形成和发展:中航工业北京航空制造工程研究所建所55周年纪念[J]. 航空制造技术, 2012, 55(13):34-39. GUAN Q, SHAO Y C. Formation and development of the system of non-conventional welding/joining techniques for aviation industry[J]. Aeronautical Manufacturing Technology, 2012, 55(13):34-39(in Chinese).
[2] 陈玮, 李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术, 2018, 61(10):30-37. CHEN W, LI Z Q. Additive manufacturing of aerospace titanium alloys:opportunities and challenges[J]. Aeronautical Manufacturing Technology, 2018, 61(10):30-37(in Chinese).
[3] 李晓红, 熊华平, 张学军. 先进航空材料焊接技术[M]. 北京:国防工业出版社, 2012. LI X H, XIONG H P, ZHANG X J. Joining technologies of advanced aeronautical materials[M]. Beijing:National Defense Industry Press, 2012(in Chinese).
[4] 张晓兵. 激光加工小孔技术[M]. 北京:国防工业出版社, 2020. ZHANG X B. Laser drilling technology[M]. Beijing:National Defense Industry Press, 2020(in Chinese).
[5] 中国机械工程学会焊接学会. 中国焊接:1994-2016[M]. 北京:机械工业出版社, 2017. Chinese Mechanical Engineering Society, Welding Society. China welding:1994-2016[M]. Beijing:China Machine Press, 2017(in Chinese).
[6] 陈彦斌,徐庆鸿,苏彦东. 激光-同轴电弧复合焊接热源焊接[J]. 焊接学报, 1995, 16(4):239-243. CHEN Y B, XU Q H, SU Y D. Welding application of combined laser-coaxial arc heat source[J]. Transactions of the China Welding Institution, 1995, 16(4):239-243(in Chinese)..
[7] 左铁钏, 陈虹, 张冬云, 等. 激光制造技术在航空领域中的应用[J]. 航空制造技术, 2008, 51(21):32-34. ZUO T C, CHEN H, ZHANG D Y, et al. Application of laser manufacturing technology in aviation industry[J]. Aeronautical Manufacturing Technology, 2008, 51(21):32-34(in Chinese).
[8] 左铁钏. 21世纪的先进制造:激光技术与工程[M]. 北京:科学出版社, 2007. ZUO T C. Advanced manufacturing in the 21 st century:laser technology and engineering[M]. Beijing:Science Press, 2007(in Chinese).
[9] MUELLER N G, WEBER R, WEBER H P. Output beam characteristics of high-power continuous-wave diode laser bars[J]. Optical Engineering, 1995, 34(8):2384-2389.
[10] MENDEZ P F, EAGAR T W. Welding processes for aeronautics[J]. Advanced Materials and Processes, 2001, 159(5):39-43.
[11] 姚伟, 巩水利, 陈俐. 钛合金激光穿透焊的焊缝成形(I)[J]. 焊接学报, 2004, 25(4):119-122, 134. YAO W, GONG S L, CHEN L. Research on weld shaping for laser fully penetration welding titanium alloy(Ⅰ)[J]. Transactions of the China Welding Institution, 2004, 25(4):119-122, 134(in Chinese).
[12] 苏彦东. 激光深熔焊接热效率的研究[D]. 北京:北京航空航天大学, 2000. SU Y D. Research on thermal efficiency of laser deep penetration welding[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2000(in Chinese).
[13] 巩水利. 高能束流加工技术在航空发动机领域的应用[J]. 航空制造技术, 2013, 56(9):34-37. GONG S L. Application of high power beam processing technology in aeroengine[J]. Aeronautical Manufacturing Technology, 2013, 56(9):34-37(in Chinese).
[14] 陈俐, 董春林, 吕高尚, 等. YAG/MAG激光电弧复合焊工艺研究[J]. 焊接技术, 2004, 33(4):21-23, 35. CHEN L, DONG C L, LV G S, et al. Research on YAG laser/MAG arc hybrid welding[J]. Welding Technology, 2004, 33(4):21-23, 35(in Chinese).
[15] SCHULTZ H. 电子束焊接技术[M]. 周山山,译. 武汉:华中科技大学出版社, 2020. SCHULTZ H. Electron beam welding[M]. ZHOU S S, translated. Wuhan:Huazhong University of Science and Technology Press, 2020(in Chinese).
[16] STEIGERWALD K H, SAYEGH G, POWERS D. An international history of electron beam welding[M]. Hanau:Heraeus GmbH and Leybold AG, 2007.
[17] ZHANG W, XIAO P, CHEN Z. Temperature field simulation of pulsed electron beam welding on 304 stainless steel[J]. Rare Metal Materials and Engineering, 2013, 42(2):033-037.
[18] 齐铂金, 范霁康, 刘方军. 脉冲束流电子束焊接技术综述[J]. 航空制造技术, 2015, 58(11):26-30. QI B J, FAN J K, LIU F J. An overview of pulsed electron beam welding technology[J]. Aeronautical Manufacturing Technology, 2015, 58(11):26-30(in Chinese).
[19] ELMER J, VAJA J, CARLTON H. The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel[J]. Welding Journal, 2016, 95(11):419-430.
[20] 孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019, 62(18):63-72. SUN W J, WANG S L, CHEN Y H, et al. Development of advanced welding technologies for titanium alloys[J]. Aeronautical Manufacturing Technology, 2019, 62(18):63-72(in Chinese).
[21] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013(3):5-7. WANG H M. Additive manufacturing of high-performance metallic structures opens a new page of manufacturing for the national defense industry[J]. Defense Manufacturing Technology, 2013(3):5-7(in Chinese).
[22] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9):684-688, 658. LIN X, HUANG W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 2015, 34(9):684-688, 658(in Chinese).
[23] 宋文清, 李晓光, 曲伸, 等. 金属增材制造技术在航空发动机中的应用展望[J]. 金属加工(热加工), 2016(2):44-46. SONG W Q, LI X G, QU S, et al. Application of metal additive manufacturing technology in aero-engine[J]. Machinist Metal Forming, 2016(2):44-46(in Chinese).
[24] 朱忠良, 赵凯, 郭立杰, 等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机, 2020, 50(1):1-14, 124. ZHU Z L, ZHAO K, GUO L J, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 2020, 50(1):1-14, 124(in Chinese).
[25] 陈玮, 杨洋, 刘亮亮, 等. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究[J]. 航空制造技术, 2017, 60(1/2):37-41. CHEN W, YANG Y, LIU L L, et al. Microstructure control and tensile properties of EBM γ-TiAl[J]. Aeronautical Manufacturing Technology, 2017, 60(1/2):37-41(in Chinese).
[26] ARCELLA F G, FROES F H. Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5):28-30.
[27] ABBOTT D. AeroMet implementing novel Ti process[J]. Metal Powder Report, 1998, 53(2):24-26.
[28] KOBRYN P A, SEMIATIN S L. The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9):40-42.
[29] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[30] MARKL M, KÖRNER C. Multiscale modeling of powder bed-based additive manufacturing[J]. Annual Review of Materials Research, 2016, 46:93-123.
[31] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.
[32] ALCISTO J, ENRIQUEZ A, GARCIA H, et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V[J]. Journal of Materials Engineering and Performance, 2011, 20(2):203-212.
[33] LU Y, TANG H B, FANG Y L, et al. Microstructure evolution of sub-critical annealed laser deposited Ti-6Al-4V alloy[J]. Materials & Design, 2012, 37:56-63.
[34] CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87:309-320.
[35] GÄUMANN M, BEZENÇON C, CANALIS P, et al. Single-crystal laser deposition of superalloys:processing-microstructure maps[J]. Acta Materialia, 2001, 49(6):1051-1062.
[36] LIU C M, TIAN X J, WANG H M, et al. Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering:A, 2014, 609:177-184.
[37] DUTTA B, FROES F H. Additive manufacturing of titanium alloys[J]. Advanced Materials and Processes, 2014, 172(2):18-23.
[38] BAUFELD B, BIEST O, DILLIEN S. Texture and crystal orientation in Ti-6Al-4V builds fabricated by shaped metal deposition[J]. Metallurgical and Materials Transactions A, 2010, 41(8):1917-1927.
[39] CLARK D, WHITTAKER M T, BACHE M R. Microstructural characterization of a prototype titanium alloy structure processed via direct laser deposition(DLD)[J]. Metallurgical and Materials Transactions B, 2012, 43(2):388-396.
[40] BAUFELD B, DER BIEST O V, GAULT R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties[J]. Materials & Design, 2010, 31:S106-S111.
[41] DINWIDDIE R B, DEHOFF R R, LLOYD P D, et al. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8705, Thermosense:Thermal Infrared Applications XXXV. 2013, 8705:156-164.
[42] CHAUDHARY A. Modeling of laser-additive manufacturing processes[M]//Metals Process Simulation. Materials Park:ASM International, 2010:240-252.
[43] SOCHALSKI-KOLBUS L M, PAYZANT E A, CORNWELL P A, et al. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering[J]. Metallurgical and Materials Transactions A, 2015, 46(3):1419-1432.
[44] ZHANG J H, YANG Y, CAO S, et al. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10):1311-1320.
[45] DEHOFF R, DUTY C, PETER W, et al. Case study:additive manufacturing of aerospace brackets[J]. Advanced Materials and Processes, 2013, 171:19-22.
[46] BIAMINO S, PENNA A, ACKELID U, et al. Electron beam melting of Ti-48Al-2Cr-2 Nb alloy:Microstructure and mechanical properties investigation[J]. Intermetallics, 2011, 19(6):776-781.
[47] LIN B C, CHEN W, YANG Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2 Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830:154684.
[48] LIN B C, CHEN W. Mechanical properties of TiAl fabricated by electron beam melting-A review[J]. China Foundry, 2021, 18(4):307-316.
[49] 陈玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3):63-76. CHEN W, LIU Y X, LI Z Q. Research status and development trend of high-strength β titanium alloys[J]. Journal of Aeronautical Materials, 2020, 40(3):63-76(in Chinese).
[50] 乔虹, 刘运玺, 陈玮, 等. 热处理对EBM Ti-4Al-5V-5Mo-6Cr-1 Nb合金显微组织与拉伸性能的影响[J]. 航空制造技术, 2020, 63(19):85-90. QIAO H, LIU Y X, CHEN W, et al. Effect of heat treatment on microstructure and tensile properties of EBM Ti-4Al-5V-5Mo-6Cr-1 Nb alloy[J]. Aeronautical Manufacturing Technology, 2020, 63(19):85-90(in Chinese).
[51] 徐滨士, 朱绍华. 表面工程的理论与技术[M]. 北京:国防工业出版社, 2010. XU B S, ZHU S H. Theories and technologies on surface engineering[M]. Beijing:National Defense Industry Press, 2010(in Chinese).
[52] YARRAPAREDDY E, KOVACEVIC R. Synthesis and characterization of laser-based direct metal deposited nano-particles reinforced surface coatings for industrial slurry erosion applications[J]. Surface and Coatings Technology, 2008, 202(10):1951-1965.
[53] PRZYBYLOWICZ J, KUSINSKI J. Laser cladding and erosive wear of Co-Mo-Cr-Si coatings[J]. Surface and Coatings Technology, 2000, 125(1-3):13-18.
[54] 肖爱红, 邱长军, 李学兵. 激光表面改性技术及其应用综述[J]. 机械制造, 2006, 44(3):59-61. XIAO A H, QIU C J, LI X B. Laser surface processing technology and its application[J]. Machinery, 2006, 44(3):59-61(in Chinese).
[55] 刘永, 张凡云, 施国梅, 等. 高能束表面改性技术在航空制造中的应用[J]. 航空制造技术, 2014, 57(S1):41-43,52. LIU Y, ZHANG F Y, SHI G M, et al. Application of power beam surface modification for aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2014, 57(S1):41-43,52(in Chinese).
[56] FAIRAND B P, WILCOX B A, GALLAGHER W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9):3893-3895.
[57] PEYRE P, FABBRO R. Laser shock processing:a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12):1213-1229.
[58] 张永康. 激光加工技术[M]. 北京:化学工业出版社, 2004. ZHANG Y K. Laser processing technology[M]. Beijing:Chemical Industry Press, 2004(in Chinese).
[59] ZHANG X C, ZHANG Y K, LU J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering:A, 2010, 527(15):3411-3415.
[60] 曹子文, 邹世坤, 巩水利. 激光冲击处理技术最新动态及发展趋势[J]. 航空制造技术, 2010, 53(5):40-42. CAO Z W, ZOU S K, GONG S L. The latest movement and development trend of laser shock processing[J]. Aeronautical Manufacturing Technology, 2010, 53(5):40-42(in Chinese).
[61] 王健, 邹世坤, 谭永生. 激光冲击处理技术在发动机上的应用[J]. 应用激光, 2005, 25(1):32-34. WANG J, ZOU S K, TAN Y S. Application of laser shock processing on turbine engines[J]. Applied Laser, 2005, 25(1):32-34(in Chinese).
[62] 车志刚, 史一宁, 唐楠, 等. 激光诱导等离子体在材料表面强化中的应用[J]. 应用激光, 2013, 33(4):465-468. CHE Z G, SHI Y N, TANG N, et al. Applications of plasma induced by laser shock on surface treatment[J]. Applied Laser, 2013, 33(4):465-468(in Chinese).
[63] 邹世坤, 曹子文, 赵勇, 等. Laser peening of aluminum alloy 7050 with fastener holes[J]. 中国光学快报(英文版), 2008, 6(2):116-119. ZOU S K, CAO Z W, ZHAO Y, et al. Laser peening of aluminum alloy 7050 with fastener holes[J]. Chinese Optics Letters, 2008, 6(2):116-119(in Chinese).
[64] SANO Y, ADACHI T, AKITA K, et al. Enhancement of surface property by low-energy laser peening without protective coating[J]. Key Engineering Materials, 2007, 345-346:1589-1592.
[65] 董一巍, 吴宗璞, 李效基, 等. 叶片气膜孔加工与测量技术的现状及发展趋势[J]. 航空制造技术, 2018, 61(13):16-25. DONG Y W, WU Z P, LI X J, et al. Current situation and development trend of processing and measurement technology for turbine blade film cooling hole[J]. Aeronautical Manufacturing Technology, 2018, 61(13):16-25(in Chinese).
[66] PARK J K, YOON J W, CHO S H. Vibration assisted femtosecond laser machining on metal[J]. Optics and Lasers in Engineering, 2012, 50(6):833-837.
[67] 张晓兵, 孙瑞峰. 二次法激光加工小孔技术研究[J]. 航空学报, 2014, 35(3):894-901. ZHANG X B, SUN R F. Sequential laser drilling technology[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):894-901(in Chinese).
[68] FENG Q, PICARD Y N, LIU H, et al. Femtosecond laser micromachining of a single-crystal superalloy[J]. Scripta Materialia, 2005, 53(5):511-516.
[69] FENG Q, PICARD Y N, MCDONALD J P, et al. Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings[J]. Materials Science and Engineering:A, 2006, 430(1-2):203-207.
[70] BALDACCHINI T, CAREY J E, ZHOU M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2006, 22(11):4917-4919.
[71] VOROBYEV A Y, GUO C L. Femtosecond laser blackening of platinum[J]. Journal of Applied Physics, 2008, 104(5):053516.
[72] 王西昌, 巩水利, 郭恩明, 等. 电子束"毛化"技术及其在复合材料制造领域中的应用[J]. 航空制造技术, 2009, 52(S1):53-55. WANG X C, GONG S L, GUO E M, et al. Electron beam surfi-sculpt technology and its application in composites manufacturing field[J]. Aeronautical Manufacturing Technology, 2009, 52(Sup.1):53-55(in Chinese).
[73] 李凯, 付鹏飞, 唐代斌, 等. TC4钛合金电子束表面造型形貌及近表面组织特征[J]. 航空学报, 2017, 38(12):421361. LI K, FU P F, TANG D B, et al. Topography and near-surface microstructure of TC4 alloy treated by electron beam surfi-sculpt TM[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421361(in Chinese).
Outlines

/