Solid Mechanics and Vehicle Conceptual Design

Wind tunnel test on gust alleviation control strategies of elastic wing

  • Xian’ang ZENG ,
  • Dongqiang ZHAO ,
  • Junjie LI ,
  • Zezhou YAN ,
  • Chengyu LIU
Expand
  • Aircraft Strength Design and Research Department,AVIC The First Aircraft Institute,Xi’an 710089,China
E-mail: 529047986@qq.com

Received date: 2021-12-27

  Revised date: 2022-01-05

  Accepted date: 2022-02-07

  Online published: 2022-02-18

Supported by

Major Project Foundation of China(MJ-2017-F-08)

Abstract

Two control strategies for gust alleviation of elastic wing are introduced. The first control strategy is Modal Damping Enhanced Gust Alleviation (MDEGA). The ailerons are driven to deflect in unloading direction by feedback of wing tip vibration velocity, so as to alleviate the dynamic load and vibration of the wing. The other control strategy is called Gust Sensing Based Gust Suppression (GSBGS). The gust detector senses the gust velocity and feeds it forward to actuate ailerons. Then the control force is generated on aileron to counteract the gust load. In order to verify the implemental effect of these two control strategies, a principle wind tunnel test is conducted with the high-aspect-ratio wing of an elastic aircraft scale model as the research object. The experimental results showed that the two controllers both significantly reduced the gust response of the 1st wing bending mode and the peak reduction ratio in terms of wing root bending moment as well as wing tip acceleration exceeded 50%. Compared with MDEGA, GSBGS controller is more effective on gust alleviation at frequencies other than the peak frequency. The two strategies have their own characteristics which can provide reference for engineering design: MDEGA is equivalent to increasing structural damping which is independent of gust measurement but constrained by aeroservoelastic stability; GBSGS is essentially an open loop controller, which means its influence on aircraft dynamic behavior can be ignored, whereas it relies greatly on accurate gust detection.

Cite this article

Xian’ang ZENG , Dongqiang ZHAO , Junjie LI , Zezhou YAN , Chengyu LIU . Wind tunnel test on gust alleviation control strategies of elastic wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 226869 -226869 . DOI: 10.7527/S1000-6893.2022.26869

References

1 ALAM M, HROMCIK M, HANIS T. Active gust load alleviation system for flexible aircraft: Mixed feedforward/feedback approach[J]. Aerospace Science and Technology201541: 122-133.
2 刘澄澄, 赵永辉. 弹性飞机阵风减缓研究[J]. 航空计算技术201444(1): 78-82.
  LIU C C, ZHAO Y H. Research on gust response alleviation of an elastic aircraft[J]. Aeronautical Computing Technique201444(1): 78-82 (in Chinese).
3 MCKENZIE J. B-52 control configured vehicles ride control analysis and flight test[C]∥ 5th Aircraft Design, Flight Test and Operations Meeting. Reston: AIAA, 1973.
4 DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets197714(2): 81-86.
5 BRITT R T, JACOBSON S B, ARTHURS T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft200037(5): 745-752.
6 赵晶慧, 余圣晖. 民机阵风减缓技术分析[J]. 国际航空2011(11): 66-68.
  ZHAO J H, YU S H. Research on the gust alleviation technology[J]. International Aviation2011(11): 66-68 (in Chinese).
7 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报201536(4): 1011-1033.
  YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica201536(4): 1011-1033 (in Chinese).
8 REGAN C D, JUTTE C V. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft:NASA/TM-2012-216008 [R].Washington,D.C.:NASA,2012.
9 胡志明, 赵永辉. 基于前视突风探测信息的飞机载荷减缓控制[J]. 航空计算技术201545(4): 33-37.
  HU Z M, ZHAO Y H. Load alleviation for an aircraft based on forward looking gust information[J]. Aeronautical Computing Technique201545(4): 33-37 (in Chinese).
10 储玉飞, 刘东, 王珍珠, 等. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报202037(5): 580-600.
  CHU Y F, LIU D, WANG Z Z, et al. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics202037(5): 580-600 (in Chinese).
11 RABADAN G J, SCHMITT N P, PISTNER T, et al. Airborne lidar for automatic feedforward control of turbulent in-flight phenomena[J]. Journal of Aircraft201047(2): 392-403.
12 HAHN K U, KOENIG R. ATTAS flight test and simulation results of the advanced gust management system LARS[C]∥ Guidance, Navigation and Control Conference. Reston: AIAA, 1992.
13 陈洋, 王正杰, 郭士钧. 多控制面柔性翼飞行器阵风减缓研究[J]. 北京理工大学学报201737(12): 1229-1234, 1240.
  CHEN Y, WANG Z J, GUO S J. Gust alleviation of flexible wing aircraft with multiple control surfaces[J]. Transactions of Beijing Institute of Technology201737(12): 1229-1234, 1240 (in Chinese).
14 蒲利东, 谭申刚, 霍应元. 基于遗传算法的柔性飞翼布局阵风减缓设计[J]. 飞行力学201634(5): 40-43, 48.
  PU L D, TAN S G, HUO Y Y. Gust load alleviation of a flexible flying wing configuration based on genetic algorithm[J]. Flight Dynamics201634(5): 40-43, 48 (in Chinese).
15 ZHAO Y H, YUE C Y, HU H Y. Gust load alleviation on a large transport airplane[J]. Journal of Aircraft201653(6): 1932-1946.
16 SCOTT R, COULSON D, CASTELLUCCIO M, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
17 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报200930(12): 2250-2256.
  CHEN L, WU Z G, YANG C, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica200930(12): 2250-2256 (in Chinese).
18 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报201743(1): 184-192.
  YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics201743(1): 184-192 (in Chinese).
19 BI Y, XIE C C, AN C, et al. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control[J]. Chinese Journal of Aeronautics201730(1): 292-309.
20 曾宪昂, 蒲利东, 李俊杰, 等. 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报201738(5): 120596.
  ZENG X A, PU L D, LI J J, et al. Wind-tunnel test of maneuver load control based overdetermined trim[J]. Acta Aeronautica et Astronautica Sinica201738(5): 120596 (in Chinese).
21 赵卓林, 陈同银, 唐超, 等. 大展弦比飞机阵风降载策略与载荷测试分析[J]. 飞机设计201838(5): 17-20.
  ZHAO Z L, CHEN T Y, TANG C, et al. The gust load alleviation design and flight tests for an aircraft with large aspect ratio[J]. Aircraft Design201838(5): 17-20 (in Chinese).
22 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击202039(4): 106-112, 121.
  YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator's dynamic characteristics[J]. Journal of Vibration and Shock202039(4): 106-112, 121 (in Chinese).
Outlines

/