Articles

Ground test bench for X-ray pulsar navigation dynamic simulation

  • Lizhi SHENG ,
  • Wei ZHENG ,
  • Tong SU ,
  • Dapeng ZHANG ,
  • Yidi WANG ,
  • Xianghui YANG ,
  • Neng XU ,
  • Zhize LI
Expand
  • 1.Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China
    2.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2021-11-15

  Revised date: 2021-12-10

  Accepted date: 2022-01-27

  Online published: 2022-02-18

Supported by

National Natural Science Foundation of China(61901470);The CAS “Light of West China” Program(XAB2020YN13);State Key Laboratory Fund of Intense Pulsed Radiation Simulation and Effect(SKLIPR2021)

Abstract

Theoretical and preliminary experimental studies of X-ray pulsar-based navigation have been carried out at home and abroad, but there are still some defects such as lack of credible experimental verification and imperfect theoretical model. In this paper, a method for simulation of X-ray pulsar dynamic signals is proposed, which can be used to generate the pulsar dynamic signal based on X-ray pulsar properties and the spacecraft orbit model. An X-ray pulsar simulation source and the whole ground test bench are developed. Static and dynamic ground simulation tests are performed. Based on the parameters of the pulsars PSR B0531+21 and PSR B1937+21, the pulse profile similarity obtained with the static simulation test is 99.5% and 99.1%, respectively. Dynamic simulation tests of the two pulsars at the circular orbit height of 200 km are performed. Deviation of the test results and the theory results of the pulse period is 38 451 ps and 350 ps and the pulse profile similarity is 99.8% and 99.9% when the timing coordinate transfer to SSB, for PSR B0531+21 and PSR B1937+21, respectively. The test bench system can realize orbit maneuver simulation based on the Hofmann model. The ground experiment system has stable performance and can meet the needs of different types of simulation experiments.

Cite this article

Lizhi SHENG , Wei ZHENG , Tong SU , Dapeng ZHANG , Yidi WANG , Xianghui YANG , Neng XU , Zhize LI . Ground test bench for X-ray pulsar navigation dynamic simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526656 -526656 . DOI: 10.7527/S1000-6893.2022.26656

References

1 SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005.
2 HANSON J E. Principles of X-ray navigation[D]. Stanford: Stanford University, 1996.
3 帅平, 李明, 陈绍龙,等. X射线脉冲星导航系统原理与方法[M]. 北京: 中国宇航出版社, 2009: 11-22.
  SHUAI P, LI M, CHEN S L, et al. X-ray pulsar navigation system principle and methods[M]. Beijing: China Astronautic Publishing House, 2009: 11-22 (in Chinese).
4 GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft X-ray timing spectroscopy[C]∥Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. Bellingham: SPIE, 2012: 322-329.
5 WOOD K S, DETERMAN J R, RAY P S, et al. Using the unconventional stellar aspect (USA) experiment on ARGOS to determine atmospheric parameters by X-ray occultation[C]∥SPIE, Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV. Bellingham: SPIE, 20024485: 258-265.
6 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 20-26.
  ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: theory and applications[M]. Beijing: Science Press, 2015: 20-26 (in Chinese).
7 WINTERNITZ L M, MITCHELL J W, HASSOUNEH M A, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥2018 SpaceOps Conference. Reston: AIAA, 2018: 2538.
8 黄良伟, 帅平, 张新源, 等. 脉冲星导航试验卫星时间数据分析与脉冲轮廓恢复[J]. 中国空间科学技术201737(3): 1-10.
  HUANG L W, SHUAI P, ZHANG X Y, et al. XPNAV-1 Satellite timing data analysis and pulse profile recovery[J]. Chinese Space Science and Technology201737(3): 1-10 (in Chinese).
9 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学201747(9): 099505.
  ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201747(9): 099505 (in Chinese).
10 ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[J]. The Astrophysical Journal Supplement Series2019244(1), doi: 10.3847/1538-4365/ab371 .
11 WINTERNITZ L M, HASSOUNEH M A, MITCHELL J W. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥ 2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14.
12 孙守明. 基于X射线脉冲星的航天器自主导航方法研究[D]. 长沙: 国防科技大学, 2011: 116-124.
  SUN S M. Study on autonomous navigation method of spacecraft based on X-ray pulsars[D]. Changsha: National University of Defense Technology, 2011: 116-124 (in Chinese).
13 HU H J, SONG J, SHAO S P, et al. A new method of evaluation of X-ray pulsar detector sensitivity[C]∥Fifth Symposium on Novel Optoelectronic Detection Technology and Application. Bellingham: SPIE, 201911023: 452-460.
14 方海燕, 丛少鹏, 孙海峰, 等. 具有多物理特性的X射线脉冲星导航地面验证系统[J]. 物理学报201968(8): 089701.
  FANG H Y, CONG S P, SUN H F, et al. Ground verification system of X-ray pulsar navigation with multi-physical properties[J]. Acta Physica Sinica201968(8): 089701 (in Chinese).
15 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究[J]. 物理学报201160(11): 119701.
  SU Z, XU L P, WANG T. X-ray pulsar-based navigation semi-physical simulation experiment system[J]. Acta Physica Sinica201160(11): 119701 (in Chinese).
16 盛立志, 赵宝升, 吴建军, 等. X射线脉冲星导航系统模拟光源的研究[J]. 物理学报201362(12): 574-579.
  SHENG L Z, ZHAO B S, WU J J, et al. Research of X-ray pulsar navigation simulation source[J]. Acta Physica Sinica201362(12): 574-579 (in Chinese).
17 徐能, 盛立志, 张大鹏, 等. X射线脉冲星导航动态模拟实验系统研制与性能测试[J]. 物理学报201766(5): 334-340.
  XU N, SHENG L Z, ZHANG D P, et al. Development and performance test of dynamic simulation system for X-ray pulsar navigation[J]. Acta Physica Sinica201766(5): 334-340 (in Chinese).
18 徐能. 用于导航的X射线脉冲星地面模拟关键技术[D]. 西安: 西安交通大学, 2019: 74-96.
  XU N. Core Technologies of X-ray Pulsar Ground Simulation for Navigation Application[D]. Xi’an: Xi’an Jiaotong University, 2019: 74-96 (in Chinese).
19 李连升, 梅志武, 吕政欣, 等. 掠入射聚焦型X射线脉冲星望远镜及在轨数据分析[J]. 兵器装备工程学报201738(12): 175-179.
  LI L S, MEI Z W, LYU Z X, et al. Grazing incidence focusing X-ray pulsar telescope and analysis of In-orbit observation data[J]. Journal of Ordnance Equipment Engineering201738(12): 175-179 (in Chinese).
20 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法[J]. 物理学报201362(1): 019701.
  ZHOU Q Y, JI J F, REN H F. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data[J]. Acta Physica Sinica201362(1): 019701 (in Chinese).
21 胡慧君, 赵宝升, 盛立志, 等. 一种基于泊松分布的提高X射线脉冲星脉冲轮廓信噪比的方法[J]. 中国科学: 物理学 力学 天文学201141(8): 1015-1020.
  HU H J, ZHAO B S, SHENG L Z, et al. A method for improving the SNR of X-ray pulsar pulse profile based on Poisson distribution[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201141(8): 1015-1020 (in Chinese).
22 WANG Y D, ZHENG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems201652(5): 2210-2219.
23 EPN pulsar data archive[EB/OL]. [2022-01-31]. .
Outlines

/