ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model
Received date: 2021-12-28
Revised date: 2022-01-20
Accepted date: 2022-01-21
Online published: 2022-01-26
Supported by
National Natural Science Foundation of China(11902367);Natural Science Foundation of Hunan Province(S2021JJQNJJ2716);Foundation of State Key Laboratory of Aerodynamics(SKLA-20200202)
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) would become undulated under the effect of aerodynamic force, thereby facilitating the flow transition to turbulence. Accurate prediction of transition onsets and surface heat flux is of paramount importance for the design of thermal protection systems. The improved k-ω-γ model for separation-induced transition prediction possesses predictive capability for the first-, second-, and crossflow-mode instability and flow separation instability. In this study, it is applied to the boundary layer transition prediction over HIAD with wave-like wall deformation with different Reynolds numbers, and compared with the results by the original k-ω-γ model to assess and verify its performance for complicated transition nature. Furthermore, the transition prediction mechanisms of the improved k-ω-γ model are carefully dissected. Results show that the improved k-ω-γ could accurately predict the transition onsets, transition shapes and wall heat flux distributions of HIAD with different incoming Reynolds numbers. The transition prediction at crests of undulating surfaces is mainly triggered by the constructed separation intermittency, while in valleys, the contributions of the first mode, crossflow mode and flow separation instabilities should be emphasized. Current research indicates the huge application potential of the improved k-ω-γ model for complex configurations, and can provide reference for the development of the transition prediction method for flow transition induced by multiple instability coupling.
Hongkang LIU , Jianqiang CHEN , Xinghao XIANG , Yatian ZHAO . Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 126868 -126868 . DOI: 10.7527/S1000-6893.2022.26868
1 | O'KEEFE S, BOSE D. IRVE-II post-flight trajectory reconstruction[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2010. |
2 | OLDS A, BECK R, BOSE D M, et al. IRVE-3 post-flight reconstruction[C]∥ AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
3 | 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. |
CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese). | |
4 | HOLLIS B R. Surface heating and boundary-layer transition on a hypersonic inflatable aerodynamic decelerator[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 856-876. |
5 | LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
6 | LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. |
7 | 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ 高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711. |
XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711 (in Chinese). | |
8 | WANG L, FU S. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(5): 768-774. |
9 | WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187. |
10 | WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34: 62-69. |
11 | CHO J R, CHUNG M K. A K-ε-γ equation turbulence model[J]. Journal of Fluid Mechanics, 1992, 237: 301-322. |
12 | WALTERS D K, LEYLEK J H. Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate[J]. Journal of Turbomachinery, 2005, 127(1): 52-63. |
13 | 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857. |
YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese). | |
14 | 袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报, 2021, 42(9): 625733. |
YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese). | |
15 | 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183-195. |
YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183-195 (in Chinese). | |
16 | 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. |
CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese). | |
17 | ZHOU L. Improved k-ω-γ model for crossflow-induced transition prediction in hypersonic flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 115-130. |
18 | ZHOU L, ZHAO R, YUAN W. Application of improved k-ω-γ transition model to hypersonic complex configurations[J]. AIAA Journal, 2019, 57(5): 2214-2221. |
19 | ZHAO Y T. Assessment of laminar-turbulent transition models for hypersonic inflatable aerodynamic decelerator aeroshell in convection heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 132: 825-836. |
20 | ZHAO Y T, CHEN J, ZHAO R, et al. Assessment and improvement of k-ω-γ model for separation-induced transition prediction[J]. Chinese Journal of Aeronautics, 2022, 35(11): 219-234. |
21 | WARREN E S, HASSAN H A. Transition closure model for predicting transition onset[J]. Journal of Aircraft, 1998, 35(5): 769-775. |
22 | ZHAO Y T. Uncertainty and sensitivity analysis of flow parameters for transition models on hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2019, 135: 1286-1299. |
23 | ZHAO Y T, et al. Quantification of parametric uncertainty in k-ω-γ transition model for hypersonic flow heat transfer[J]. Aerospace Science and Technology, 2020, 96: 105553. |
24 | 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102. |
ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese). | |
25 | 李珺, 王俊峰, 赵雅甜, 等. 面向非设计工况的激波针-喷流复合构型研究[J]. 航空学报, 2022, 43(9): 125949. |
LI J, WANG J F, ZHAO Y T, et al. Research on combinational configuration of spike and multi-jets in off-design regimes[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 125949 (in Chinese). | |
26 | RUFER S, BERRIDGE D. Pressure fluctuation measurements in the NASA langley 20-inch Mach 6 wind tunnel[C]∥ 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2012. |
27 | ZHAO Y T, LIU H K, LIU Z J,et al. Numerical study of the cone angle effects on transition and convection heat transfer for hypersonic inflatable aerodynamic decelerator aeroshell[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104406. |
28 | CHANG C L, CHOUDHARI M, HOLLIS B, et al. Transition analysis for the Mars science laboratory entry vehicle[C]∥ 41st AIAA Thermophysics Conference. Reston: AIAA, 2009. |
/
〈 |
|
〉 |