Fluid Mechanics and Flight Mechanics

Effect of grid strategy on numerical simulation results of aerothermal heating loads over hypersonic blunt bodies

  • Chongli MA ,
  • Jingyuan LIU
Expand
  • Aircraft Engineering College,Nanchang Hangkong University,Nanchang 330063,China
E-mail: jjliouu@163.com

Received date: 2021-11-29

  Revised date: 2021-12-26

  Accepted date: 2022-01-20

  Online published: 2022-01-26

Supported by

National Natural Science Foundation of China(11562012)

Abstract

Accurate prediction of aerothermal heating load over hypersonic blunt bodies is of great significance to the design of hypersonic vehicle thermal protection, while grid metric affects the prediction accuracy of aircraft surface heating load. By theoretical analysis and numerical simulation, a grid generation method is proposed according to the cell Reynolds number and freestream Reynolds number, respectively, based on the wall parameters and characteristic length of blunt bodies, and the reference value range of the cell Reynolds number based on wall parameters is also provided. The proposed grid generation method is then applied to the simulation of hypersonic aeroheating computations over semi-cylinders and semi-spheres under different incoming flow conditions. The results show that the proposed grid generation method and the suggested range of the cell Reynolds number based on wall parameters can satisfy the precision requirement of thermal environment simulation over hypersonic blunt bodies, facilitate the rational distribution of grids, and simultaneously improve the efficiency of numerical calculations.

Cite this article

Chongli MA , Jingyuan LIU . Effect of grid strategy on numerical simulation results of aerothermal heating loads over hypersonic blunt bodies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(5) : 126710 -126710 . DOI: 10.7527/S1000-6893.2022.26710

References

1 程晓丽, 艾邦成, 王强. 基于分子平均自由程的热流计算壁面网格准则[J]. 力学学报201042(6): 1083-1089.
  CHENG X L, AI B C, WANG Q. A wall grid scale criterion based on the molecule mean free path for the wall heat flux computations by the Navier-Stokes equations[J]. Chinese Journal of Theoretical and Applied Mechanics201042(6): 1083-1089 (in Chinese).
2 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报201541(4): 594-600.
  ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics201541(4): 594-600 (in Chinese).
3 HOFFMANN K, SIDDIQUI M, CHIANG S. Difficulties associated with the heat flux computations of high speed flows by the Navier-Stokes equations[C]∥ 29th Aerospace Sciences Meeting. Reston: AIAA, 1991.
4 MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research200027(5): 305-334.
5 PAPADOPOULOS P, VENKATAPATHY E, PRABHU D, et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing[J]. Applied Mathematical Modelling199923(9): 705-735.
6 KLOPFER G, YEE H. Viscous hypersonic shock-on-shock interaction on blunt cowl lips[C]∥ 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
7 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报201031(3): 493-499.
  PAN S, FENG D H, DING G H, et al. Grid dependency and convergence of hypersonic aerothermal simulation[J]. Acta Aeronautica et Astronautica Sinica201031(3): 493-499 (in Chinese).
8 张翔, 阎超, 杨威, 等. 高超声速飞行器气动热网格依赖性研究[J]. 战术导弹技术2016(3): 21-27.
  ZHANG X, YAN C, YANG W, et al. Investigation of the grid-dependency in heat transfer simulation for hypersonic vehicle[J]. Tactical Missile Technology2016(3): 21-27 (in Chinese).
9 闫文辉, 任立磊. 计算网格对气动力气动热数值模拟影响的研究[J]. 航空计算技术201747(2): 1-4.
  YAN W H, REN L L. Grid study on numerical simulation of aerodynamic flowfield[J]. Aeronautical Computing Technique201747(2): 1-4 (in Chinese).
10 QU F. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle[J]. Acta Astronautica2018147: 412-420.
11 ZHAO Y P, HU Y M, HUANG H M. Numerical analysis of convergence property of heat flux next to the wall[J]. Acta Astronautica2019155: 230-237.
12 QU F. A grid strategy for predicting the space plane's hypersonic aerodynamic heating loads[J]. Aerospace Science and Technology201986: 659-670.
13 YANG J L, LIU M. A wall grid scale criterion for hypersonic aerodynamic heating calculation[J]. Acta Astronautica2017136: 137-143.
14 REN X, YUAN J Y, HE B J, et al. Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime[J]. Journal of Fluid Mechanics2019881: 585-601.
15 HUANG H M, HU Y M. New criterion for first grid spacing off wall surface in hypersonic flow[J]. Journal of Spacecraft and Rockets201956(1): 171-178.
16 张亮, 程晓丽, 艾邦成. 高超声速气动热数值模拟法向网格准则[J]. 力学与实践201436(6): 722-727, 741.
  ZHANG L, CHENG X L, AI B C. Normal grid rule for hypersonic heat flux numerical simulation[J]. Mechanics in Engineering201436(6): 722-727, 741 (in Chinese).
17 王浩. 高超音速流动数值模拟与热流数值计算[D]. 北京: 北京航空航天大学, 2002: 77-82.
  WANG H. Numerical simulation of hypersonic flow and numerical calculation of heat flux[D]. Beijing: Beihang University, 2002: 77-82 (in Chinese).
18 谢锦睿, 吴颂平, 王浩. 高超音速热流数值计算中的误差匹配原则[J]. 北京航空航天大学学报200531(3): 274-277.
  XIE J R, WU S P, WANG H. Error matching principle for heat transfer calculations in hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics200531(3): 274-277 (in Chinese).
19 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性[J]. 物理学报202069(21): 214401.
  FANG F, BAO L, TONG B G. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model[J]. Acta Physica Sinica202069(21): 214401 (in Chinese).
20 WHITE F M. Viscous fluid flow[M]. 3rd ed. New York: McGraw-Hill, 2006: 26, 225-228, 505-506.
21 TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences194613(12): 653-664.
22 张涵信. 关于CFD高精度保真的数值模拟研究[J]. 空气动力学学报201634(1): 1-4.
  ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica201634(1): 1-4 (in Chinese).
23 GNOFFO P A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows: NASA TP-2953[R]. Washington, D.C.: NASA, 1990.
24 HOLDEN M, MOSELLE J, WIETING A, et al. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow[C]∥ 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
25 MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 and extrapolation to flight[C]∥ 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992.
26 王勇达. 典型外形高超声速气动热数值模拟的网格无关性研究[D]. 绵阳: 西南科技大学, 2020: 16-63.
  WANG Y D. Study on grid independence in numerical simulation of hypersonic aerodynamic heat for typical configuration[D]. Mianyang: Southwest University of Science and Technology, 2020: 16-63 (in Chinese).
27 黎作武. 近似黎曼解对高超声速气动热计算的影响研究[J]. 力学学报200840(1): 19-25.
  LI Z W. Study on the dissipative effect of approximate Riemann solver on hypersonic heat flux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics200840(1): 19-25 (in Chinese).
28 周伟江, 姜贵庆. 迎风TVD格式在粘性流计算中的应用研究与改进[J]. 计算物理199916(4): 401-408.
  ZHOU W J, JIANG G Q. The study and modification of upwind TVD scheme for computing viscous flows[J]. Chinese Journal of Computation Physics199916(4): 401-408 (in Chinese).
Outlines

/