ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A prediction algorithm of collection efficiency based on gradient descent method
Received date: 2021-09-14
Revised date: 2021-11-17
Accepted date: 2021-12-11
Online published: 2021-12-24
Supported by
National Natural Science Foundation of China(12132019);National Major Science and Technology Project (J2019-Ⅲ-0010-0054)
The collection efficiency transfer from impinging point to grid nodes is indispensable when determining droplet impingement property by the traditional Lagrange method. However, the general interpolation technique may bring errors and make the results disagree with the reality in the three-dimensional case. To void the interpolation, this paper proposed a new strategy that gets the trajectory of impinging near the grid node by the gradient descent method and calculates the collection efficiency on the cell center. The improved algorithm uses a deviation function iteration by gradients descent method to reduce the distance between an impinging point and the grid node. And then, a neighbor search algorithm is applied to obtain all the possible trajectories that the droplets end at the grid node. Finally, the collection efficiency on the center of the surface control element could be presented with the tube define model. In this paper, some representative cases valuated the improved method. The testing report showed that the calculation results using the proposed method are consistent with the experimental data and are better than the interpolation results by the traditional algorithm.
Jinghao REN , Qiang WANG , Weihao LI , Yu LIU , Xian YI . A prediction algorithm of collection efficiency based on gradient descent method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 126381 -126381 . DOI: 10.7527/S1000-6893.2021.26381
1 | TONG X, LUKE E A. Robust and accurate Eulerian multiphase simulations of icing collection efficiency using singularity diffusion model[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(4): 483-495. |
2 | 易贤, 王开春, 桂业伟, 等. 结冰面水滴收集率欧拉计算方法研究及应用[J]. 空气动力学学报, 2010, 28(5): 596-601, 608. |
YI X, WANG K C, GUI Y W, et al. Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica, 2010, 28(5): 596-601, 608 (in Chinese). | |
3 | ALIAGA C N, AUBé M S, BARUZZI G S, et al. FENSAP-ICE-unsteady: Unified in-flight icing simulation methodology for aircraft, rotorcraft, and jet engines[J]. Journal of Aircraft, 2011, 48(1): 119-126. |
4 | CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. |
5 | 张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报, 2013, 31(2): 144-150. |
ZHANG C, KONG W L, LIU H. An investigation on the breakup model for icing simulation of supercooled large droplets[J]. Acta Aerodynamica Sinica, 2013, 31(2): 144-150 (in Chinese). | |
6 | WRIGHT W. Validation results for LEWICE 3.0[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
7 | SAEED F, BRETTE C, FREGEAU M, et al. A three-dimensional water droplet trajectory and impingement analysis program[C]∥23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005. |
8 | HEDDE T, GUFFOND D. Improvement of the ONERA3-D icing code, comparison with 3D experimental shapes: AIAA-1993-169[R].Reston: AIAA, 1993. |
9 | LEE S, LOTH E. Simulation of icing on a cascade of stator blades[J]. Journal of Propulsion and Power, 2008, 24(6): 1309-1316. |
10 | QIN C, LOTH E. Numerical study of droplet trajectory and collection efficiency in IRT with large blockage effects: AIAA-2017-4376 [R]. Reston: AIAA, 2017. |
11 | RENDALL T C S, ALLEN C B. Finite-volume droplet trajectories for icing simulation[J]. International Journal of Multiphase Flow, 2014, 58: 185-194. |
12 | WIDHALM M, RONZHEIMER A, MEYER J. Lagrangian particle tracking on large unstructured three-dimensional meshes[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
13 | XIE L, LI P Z, CHEN H, et al. Robust and efficient prediction of the collection efficiency in icing accretion simulation for 3D complex geometries using the Lagrangian approach I: An adaptive interpolation method based on the restricted radial basis functions[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119290. |
14 | 任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报, 2020, 35(12): 2553-2561. |
REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power, 2020, 35(12): 2553-2561 (in Chinese). | |
15 | RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. 2016: arXiv: . |
16 | 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. |
ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383 (in Chinese). | |
17 | 孙志国, 朱春玲. 三维机翼表面水滴撞击特性计算[J]. 计算物理, 2011, 28(5): 677-685. |
SUN Z G, ZHU C L. Calculation of water-droplet impingement on wing surface[J]. Chinese Journal of Computational Physics, 2011, 28(5): 677-685 (in Chinese). | |
18 | 刘深深, 桂业伟, 唐伟, 等. 一种多场耦合数据传递新方法[J]. 宇航学报, 2016, 37(1): 61-67. |
LIU S S, GUI Y W, TANG W, et al. A new data transfer method in fluid-thermal-structure coupling problems[J]. Journal of Astronautics, 2016, 37(1): 61-67 (in Chinese). | |
19 | BIDWELL C, STANLEY MOHLER Y R. Collection efficiency and ice accretion calculations for a sphere, a swept MS(1)-317 wing, a swept NACA-0012 wing tip, an axisymmetric inlet, and a Boeing 737-300 inlet[C]∥33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995. |
20 | PAPADAKIS M, HUNG K, YEONG H W, et al. Experimental investigation of water impingement on single and multi-element airfoils[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
21 | SANG W M, SHI Y, XI C. Numerical simulation of icing effect and ice accretion on three-dimensional configurations[J]. Science China Technological Sciences, 2013, 56(9): 2278-2288. |
22 | PENA D, HOARAU Y, LAURENDEAU E. A single step ice accretion model using level-set method[J]. Journal of Fluids and Structures, 2016, 65: 278-294. |
/
〈 |
|
〉 |