Design of aerogel-based thermal protector for Mars landing engine

  • ZHENG Kai ,
  • RAO Wei ,
  • XIANG Yanchao ,
  • ZHANG Dong ,
  • ZHANG Bingqiang ,
  • XUE Shuyan ,
  • DAI Chenghao ,
  • YE Qing
Expand
  • 1. Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
    2. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Received date: 2021-10-26

  Revised date: 2021-11-16

  Online published: 2021-12-09

Supported by

National Science and Technology Major Project

Abstract

The thermal protection technology for the large thrust landing engine is crucial for the safety of Martian landing mission.When the conventional high-temperature thermal shield based on the multi-stage heat radiation reflection structure is used in the Martian atmospheric environment, its heat insulation performance is significantly attenuated due to internal convection heat transfer.To solve this problem, a new type of engine thermal protector is developed based on the aerogel material.According to the operation environment for Mars exploration mission, transient simulation models with both low-pressure atmosphere and high-temperature heat flux boundaries are established, and the key design parameters such as shape taper and material thickness are optimized.The effectiveness of the design is verified by three-dimensional transient simulation analysis and the ground test with landing engine.The aerogel-based thermal protector has been successfully applied to the Tianwen-1 Mars lander, which has effectively shielded the landing engine from a high temperature of 1500℃.Based on the analysis of on orbit telemetry data, directions for improving the high temperature insulation technology based on the aerogel material are proposed.

Cite this article

ZHENG Kai , RAO Wei , XIANG Yanchao , ZHANG Dong , ZHANG Bingqiang , XUE Shuyan , DAI Chenghao , YE Qing . Design of aerogel-based thermal protector for Mars landing engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 626568 -626568 . DOI: 10.7527/S1000-6893.2021.26568

References

[1] 饶炜, 孙泽洲, 孟林智, 等.火星着陆探测任务关键环节技术途径分析[J].深空探测学报, 2016, 3(2):121-128. RAO W, SUN Z Z, MENG L Z, et al.Analysis and design for the Mars entry, descent and landing mission[J].Journal of Deep Space Exploration, 2016, 3(2):121-128(in Chinese).
[2] 刘自军, 向艳超, 斯东波, 等.嫦娥三号探测器热控系统设计与验证[J].中国科学:技术科学, 2014, 44(4):353-360. LIU Z J, XIANG Y C, SI D B, et al.Design and verification of thermal control system for Chang'E-3 probe[J].Scientia Sinica (Technologica), 2014, 44(4):353-360(in Chinese).
[3] 向艳超, 陈建新, 张冰强.嫦娥三号"玉兔"巡视器热控制[J].宇航学报, 2015, 36(10):1203-1209. XIANG Y C, CHEN J X, ZHANG B Q.Thermal control for jade rabbit rover of Chang'E-3[J].Journal of Astronautics, 2015, 36(10):1203-1209(in Chinese).
[4] 宁献文, 苏生, 陈阳, 等.月地高速再入返回器热控设计及实现[J].中国科学:技术科学, 2015, 45(2):145-150. NING X W, SU S, CHEN Y, et al.Design and implementation of circumlunar return and reentry spacecraft thermal control system[J].Scientia Sinica Technologica, 2015, 45(2):145-150(in Chinese).
[5] 宁献文, 蒋凡, 张栋, 等.月球无人采样返回探测器一体化热管理方案[J].航天器环境工程, 2017, 34(6):598-603. NING X W, JIANG F, ZHANG D, et al.An integrated thermal management scheme for lunar robotic sampling and return probe[J].Spacecraft Environment Engineering, 2017, 34(6):598-603(in Chinese).
[6] 张栋, 薛淑艳, 宁献文, 等.大推力发动机高温隔热屏设计及优化研究[J].航天器环境工程, 2017, 34(4):350-354. ZHANG D, XUE S Y, NING X W, et al.Design and optimization of high temperature heat shield for large thrust engines[J].Spacecraft Environment Engineering, 2017, 34(4):350-354(in Chinese).
[7] 江经善.多层隔热材料及其在航天器上的应用[J].宇航材料工艺, 2000, 30(4):17-25. JIANG J S.Multilayer insulation materials and their application to spacecrafts[J].Aerospace Materials & Technology, 2000, 30(4):17-25(in Chinese).
[8] 陈阳, 宁献文, 苏生, 等.不同真空度下多层隔热组件传热性能的实验研究[J].中国科学:技术科学, 2015, 45(3):263-267. CHEN Y, NING X W, SU S, et al.Experiment research on heat-transfer capability of the multi-layer insulation blankets under different vacuum degrees[J].Scientia Sinica (Technologica), 2015, 45(3):263-267(in Chinese).
[9] SHI S B, LEI B, LI M Y, et al.Thermal decomposition behavior of a thermal protection coating composite with silicone rubber:Experiment and modeling[J].Progress in Organic Coatings, 2020, 143:105609.
[10] 闵桂荣, 郭舜.航天器热控制[M].2版.北京:科学出版社, 1998. MIN G R, GUO S.Spacecraft thermal control[M].2nd ed.Beijing:Science Press, 1998(in Chinese).
[11] 侯增祺, 胡金刚.航天器热控制技术:原理及其应用[M].北京:中国科学技术出版社, 2007. HOU Z Q, HU J G.Spacecraft thermal control technology:Theory and application[M].Beijing:China Science and Technology Press, 2007(in Chinese).
[12] GILMORE D.Spacecraftthermal control handbook, Volume I:Fundamental technologies[M].Washington, D.C.:AIAA, 2002.
[13] NASA.Surface models of Mars:SP-8020[S].Washington, D.C.:NASA Space Vehicle Design Criteria (Environment) National Aeronautics and Space Administration, 1975.
[14] GENDRON S, WANG G H, JIANG X X, et al.Phoenix Mars lander mission:Thermal and CFD modeling of the meteorological instrument based on flight data[C]//40th International Conference on Environmental Systems.Reston:AIAA, 2010:6195.
[15] LAPENSEE S, ALARY C.Development and analysis of the surface thermal environment for the ExoMars lander mission[C]//40th International Conference on Environmental Systems.Reston:AIAA, 2010:6190.
[16] BHANDARI P, ANDERSON K R.CFD analysis for assessing the effect of wind on the thermal control of the Mars science laboratory curiosity rover[C]//43rd International Conference on Environmental Systems.Reston:AIAA, 2013:3325.
[17] 张冰强, 向艳超, 薛淑艳, 等.火星表面热环境对航天器热控影响分析[J].中国空间科学技术, 2021, 41(2):55-62. ZHANG B Q, XIANG Y C, XUE S Y, et al.Analysis of the influence of Mars surface thermal environment on spacecraft thermal control[J].Chinese Space Science and Technology, 2021, 41(2):55-62(in Chinese).
[18] APPELBAUM J, LANDIS G A.Solar radiation on Mars update 1991:NASA Technical Memorandum 105216[R].Washington, D.C.:NASA, 1991.
[19] 黄本诚, 马有礼.航天器空间环境试验技术[M].北京:国防工业出版社, 2002. HUANG B C, MA Y L.Space environment test technology of spacecraft[M].Beijing:National Defense Industry Press, 2002(in Chinese).
[20] 张栋, 薛淑艳, 苏生, 等.一种基于瞬态热流控制的热防护系统性能验证装置及方法:CN106198082B[P].2018-08-14. ZHANG D, XUE S Y, SU S, et al.Thermal protection system performance verifying device and method based on transient thermal flux control:CN106198082B[P].2018-08-14(in Chinese).
Outlines

/