Articles

Feature extraction method of flow around airfoil based on time-history convolutional autoencoder

  • ZHAN Qingliang ,
  • BAI Chunjin ,
  • ZHANG Ning ,
  • GE Yaojun
Expand
  • 1. College of Transportation and Engineering, Dalian Maritime University, Dalian 116026, China;
    2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Received date: 2021-10-18

  Revised date: 2021-11-08

  Online published: 2021-12-09

Supported by

National Natural Science Foundation of China (51778495, 51978527); Industry Key Laboratory of Bridge Structure Wind Resistance Technology (Shanghai) Open Project (KLWRTBMC21-02); Research Project of Liaoning Education Department (LJKZ0052)

Abstract

The flow around an airfoil directly affects its aerodynamics, and flow feature analysis is critical to ensure its aerodynamic characteristics. The feature recognition based on spatial parameters is greatly affected by subjective threshold. And flow analysis based on the snapshot data, which is difficult to obtain a large-scale snapshot in experiment, is difficult to fully represent the time-varying features of the flow evolution. Based on the low-dimensional representation model of flow time-history data, an unsupervised autoencoder method is proposed to identify flow features automatically. Deep learning is used to mine the implicit flow features in the time-history signal, and a low-dimensional representation model of the time-history data is established. The low-dimensional representation code is further analyzed, and the measurement point samples containing different features are clustered to extract and identify flow features. Analysis of the flow field around the NACA0012 airfoil with a low Reynolds number is carried out. The flow separation zone was successfully identified using the proposed feature classification method. Results proved that the proposed method can be used to solve the problems such as flow feature extraction, feature analysis, and feature characterization.

Cite this article

ZHAN Qingliang , BAI Chunjin , ZHANG Ning , GE Yaojun . Feature extraction method of flow around airfoil based on time-history convolutional autoencoder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526531 -526531 . DOI: 10.7527/S1000-6893.2021.26531

References

[1] 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1):41-48. WANG S, MI J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):41-48(in Chinese).
[2] HUANG R, LIN C. Vortex shedding and shear-layer instability of a cantilever wing at low Reynolds numbers[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995:589.
[3] ALAM M M, ZHOU Y, YANG H X, et al. The ultra-low Reynolds number airfoil wake[J]. Experiments in Fluids, 2010, 48(1):81-103.
[4] AKBARI M H, PRICE S J. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method[J]. Journal of Fluids and Structures, 2003, 17(6):855-874.
[5] HOFFMANN J A. Effects of freestream turbulence on the performance characteristics of an airfoil[J]. AIAA Journal, 1991, 29(9):1353-1354.
[6] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4):524736. YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524736(in Chinese).
[7] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689. KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese).
[8] 张洪军, 吕进. 多普勒全场测速技术的进展[J]. 力学进展, 2007, 37(3):428-442. ZHANG H J, LV J. The progress of the Doppler global velocimetry[J]. Advances in Mechanics, 2007, 37(3):428-442(in Chinese).
[9] HUNT J M. A three-dimensional particle tracking velocimetry system for the evaluation of large eddy simulation turbulence models[D]. Seattle:University of Washington, 2016:21-52.
[10] 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4):524779. WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524779(in Chinese).
[11] 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4):524686. REN F, GAO C Q, TANG H. Machine learning for flow control:Applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524686(in Chinese).
[12] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[13] MAULIK R, SAN O, JACOB J D, et al. Sub-grid scale model classification and blending through deep learning[J]. Journal of Fluid Mechanics, 2019, 870:784-812.
[14] REN F, WANG C L, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning[J]. Physics of Fluids, 2019, 31(9):093601.
[15] HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875:R2.
[16] MURATA T, FUKAMI K, FUKAGATA K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics[J]. Journal of Fluid Mechanics, 2020, 882:A13.
[17] OMATA N, SHIRAYAMA S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder[J]. AIP Advances, 2019, 9(1):015006.
[18] FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data[DB/OL]. arXiv preprint:2006.06977, 2020.
[19] 战庆亮, 葛耀君, 白春锦. 基于尾流时程目标识别的流场参数选择研究[J]. 力学学报, 2021, 53(10):2692-2702. ZHAN Q L, GE Y J, BAI C J. Study on flow field parameters of wake time history target recognition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10):2692-2702(in Chinese).
[20] 战庆亮, 葛耀君, 白春锦. 流场特征识别的无量纲时程深度学习方法[J]. 工程力学, (2021-11-18)[2021-12-02]. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2021.08.0638. ZHANQ L, GE Y J, BAI C J. Deep learning for flow feature recognition based on dimensionless time history[J]. Engineering Mechanics, (2021-11-18)[2021-1202]. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2021.08.0638(in Chinese).
[21] MUELLER T J, DELAURIER J D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35:89-111.
[22] 战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12):75-79. ZHAN Q L, ZHOU Z Y, GE Y J. 3-Dimensional large eddy simulation of circular cylinder at Re=3900[J]. Journal of Harbin Institute of Technology, 2015, 47(12):75-79(in Chinese).
[23] 王庶. 低雷诺数下NACA 0012翼型空气动力学特性[D]. 北京:北京大学, 2010. WANG S. Aerodynamic characteristics of NACA 0012 airfoil at low Reynolds number[D]. Peking:Peking University, 2010(in Chinese).
[24] 吴鋆, 王晋军, 李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学, 2013, 27(6):32-38. WU J, WANG J J, LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):32-38(in Chinese).
Outlines

/