ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies
Received date: 2021-10-11
Revised date: 2021-10-24
Accepted date: 2021-11-26
Online published: 2021-12-09
Supported by
National Natural Science Foundation of China(62103023);Young Elite Scientists Sposorship Program by CAST(2021QNRC001)
For the high-order heterogeneous swarm systems with different intra-layer cooperative control objectives and inter-layer coordination couplings, a definition and the framework for formation-containment tracking control of the swarm systems are proposed. A tracking-leader with time-varying input is applied to generate the macroscopic reference trajectory for the whole swarm systems, overcoming the shortcoming of existing formation-containment control approaches, i.e., they cannot be used to get an effective control of the macroscopic movement of the whole system. Considering the influences of switching topologies, a distributed formation-containment tracking protocol and a multi-step design algorithm are proposed based on the robust adaptive estimation approach and the predefined containment control strategy. With inter-layer coordination couplings, sufficient conditions for achieving formation-containment tracking by the heterogeneous swarm systems with switching typologies are given using the common Lyapunov stability theory. A simulation example for a group of unmanned aerial vehicles and unmanned ground vehicles is given to verify the effectiveness of the proposed controller.
Zhiqiang WEI , Zheming WENG , Yongzhao HUA , Xiwang DONG , Zhang REN . Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(2) : 326504 -326504 . DOI: 10.7527/S1000-6893.2021.26504
1 | OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533. |
2 | DONG X W, HU G Q. Time-varying formation control for general linear multi-agent systems with switching directed topologies[J]. Automatica, 2016, 73: 47-55. |
3 | MENG Z Y, REN W, YOU Z. Distributed finite-time attitude containment control for multiple rigid bodies[J]. Automatica, 2010, 46(12): 2092-2099. |
4 | HUA Y Z, DONG X W, HAN L, et al. Formation-containment tracking for general linear multi-agent systems with a tracking-leader of unknown control input[J]. Systems & Control Letters, 2018, 122: 67-76. |
5 | OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53: 424-440. |
6 | CHEN J, ZHANG X, XIN B, et al. Coordination between unmanned aerial and ground vehicles: A taxonomy and optimization perspective[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 959-972. |
7 | LINDEMUTH M, MURPHY R, STEIMLE E, et al. Sea robot-assisted inspection[J]. IEEE Robotics & Automation Magazine, 2011, 18(2): 96-107. |
8 | HUA Y Z, DONG X W, HU G Q, et al. Distributed time-varying output formation tracking for heterogeneous linear multiagent systems with a nonautonomous leader of unknown input[J]. IEEE Transactions on Automatic Control, 2019, 64(10): 4292-4299. |
9 | HUA Y Z, DONG X W, LI Q D, et al. Distributed adaptive formation tracking for heterogeneous multiagent systems with multiple nonidentical leaders and without well-informed follower[J]. International Journal of Robust and Nonlinear Control, 2020, 30(6): 2131-2151. |
10 | 田磊, 赵启伦, 董希旺, 等. 异构多智能体系统分组输出时变编队跟踪控制[J]. 航空学报, 2020, 41(7): 323727. |
TIAN L, ZHAO Q L, DONG X W, et al. Time-varying output group formation tracking for heterogeneous multi-agent systems[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323727 (in Chinese). | |
11 | 周思全, 董希旺, 李清东, 等. 无人机-无人车异构时变编队控制与扰动抑制[J]. 航空学报, 2020, 41(S1): 723767. |
ZHOU S Q, DONG X W, LI Q D, et al. Time-varying formation control and disturbance rejection for UAV-UGV heterogeneous swarm system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723767 (in Chinese). | |
12 | 田磊, 董希旺, 赵启伦, 等. 异构集群系统分布式自适应输出时变编队跟踪控制[J]. 自动化学报, 2021, 47(10): 2386-2401. |
TIAN L, DONG X W, ZHAO Q L, et al. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems[J]. Acta Automatica Sinica, 2021, 47(10): 2386-2401 (in Chinese). | |
13 | HAGHSHENAS H, BADAMCHIZADEH M A, BARADARANNIA M. Containment control of heterogeneous linear multi-agent systems[J]. Automatica, 2015, 54: 210-216. |
14 | ZUO S, SONG Y D, LEWIS F L, et al. Adaptive output containment control of heterogeneous multi-agent systems with unknown leaders[J]. Automatica, 2018, 92: 235-239. |
15 | YANG Y L, MODARES H, WUNSCH D C, et al. Optimal containment control of unknown heterogeneous systems with active leaders[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1228-1236. |
16 | 王东, 王泽华, 刘洋, 等. 基于事件触发的异构多智能体最优包含控制[J]. 航空学报, 2020, 41(S1): 723775. |
WANG D, WANG Z H, LIU Y, et al. Event-triggered optimal containment control for heterogeneous multi-agent systems[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723775 (in Chinese). | |
17 | WANG Y W, LIU X K, XIAO J W, et al. Output formation-containment of coupled heterogeneous linear systems under intermittent communication[J]. Journal of the Franklin Institute, 2017, 354(1): 392-414. |
18 | WANG Y W, LIU X K, XIAO J W, et al. Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control[J]. Automatica, 2018, 93: 26-32. |
19 | JIANG W, WEN G G, PENG Z X, et al. Fully distributed formation-containment control of heterogeneous linear multiagent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(9): 3889-3896. |
20 | LI S B, ZHANG J, LI X L, et al. Formation control of heterogeneous discrete-time nonlinear multi-agent systems with uncertainties[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4730-4740. |
21 | YU X, XU X, LIU L, et al. Circular formation of networked dynamic unicycles by a distributed dynamic control law[J]. Automatica, 2018, 89: 1-7. |
22 | QU Z H. Cooperative control of dynamical systems: Applications to autonomous vehicles[M]. London: Springer, 2009 |
23 | LI Z K, LIU X D, REN W, et al. Distributed tracking control for linear multiagent systems with a leader of bounded unknown input[J]. IEEE Transactions on Automatic Control, 2013, 58(2): 518-523. |
24 | LI D Y, ZHANG W, HE W, et al. Two-layer distributed formation-containment control of multiple Euler–Lagrange systems by output feedback[J]. IEEE Transactions on Cybernetics, 2019, 49(2): 675-687. |
25 | XU L Y, WANG C L, CAI X, et al. Two-layer distributed formation-containment control of multiple Euler-Lagrange systems with unknown control directions[J]. Neurocomputing, 2020, 387: 359-368. |
26 | HU J Y, BHOWMICK P, LANZON A. Two-layer distributed formation-containment control strategy for linear swarm systems: Algorithm and experiments[J]. International Journal of Robust and Nonlinear Control, 2020, 30(16): 6433-6453. |
27 | GONG X, CUI Y, SHEN J, et al. Necessary and sufficient conditions of formation-containment control of high-order multiagent systems with observer-type protocols[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 7002-7016. |
28 | YU Z, ZHANG Y, JIANG B, et al. Distributed fractional-order intelligent adaptive fault-tolerant formation-containment control of two-layer networked unmanned airships for safe observation of a smart city[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9132-9144. |
29 | OUYANG Y C, XUE L, DONG L, et al. Neural network-based finite-time distributed formation-containment control of two-layer quadrotor UAVs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(8): 4836-4848. |
30 | DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024. |
31 | REN W, SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(4): 324-333. |
/
〈 |
|
〉 |