Data analysis of sonic boom test based on probability model

  • Shanjie XU ,
  • Hongqiang LYU ,
  • Zhongchen LIU ,
  • Yan LENG ,
  • Xuejun LIU
Expand
  • 1.MIIT Key Laboratory of Pattern Analysis and Machine Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang  621000,China
    3.Key Laboratory of Aerodynamic Noise Control,China Aerodynamics Research and Development Center,Mianyang  621000,China
    4.Collaborative Innovation Center of Novel Software Technology and Industrialization,Nanjing University,Nanjing  210023,China
    5.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    6.Aviation Key Laboratory of Science and Technology on High Speed and High Reynolds Number Aerodynamic Force Research,AVIC Aerodynamics Research Institute,Shenyang 110034,China

Received date: 2021-08-23

  Revised date: 2021-09-17

  Accepted date: 2021-11-29

  Online published: 2021-12-09

Supported by

Aeronautical Science Foundation of China(2018ZA52002);Foundation of State Key Laboratory of Aerodynamics(SKLA20180102);Foundation of Key Laboratory of Aerodynamic Noise Control(ANCL20190103)

Abstract

Acoustic explosion is one of the key problems to be solved in the development of supersonic civil aircraft, and the wind tunnel test is an important approach to acoustic explosion research. This paper briefly introduces the methods and difficulties in sonic boom tests, the corresponding countermeasures, and the precise measurement technology of the near-field space pressure of acoustic explosion test models in supersonic wind tunnels. The principles and shortcomings of the commonly-used correction technologies of precise measurement data, the reference run method, and the spatial averaging method are analyzed. A probabilistic model method is proposed to analyze the data of the sonic boom test. The proposed method parameterizes the disturbances caused by various uncertain factors in the complex wind tunnel environment, expressing uncertainty with probability. The probabilistic model method obtains the measurement results more efficiently, requiring no reference run data, and exhibiting validity and feasibility compared with the results of traditional methods.

Cite this article

Shanjie XU , Hongqiang LYU , Zhongchen LIU , Yan LENG , Xuejun LIU . Data analysis of sonic boom test based on probability model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(2) : 626269 -626269 . DOI: 10.7527/S1000-6893.2021.26269

References

1 LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America2002111(1 Pt 2): 586-598.
2 朱自强, 吴宗成, 陈迎春. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013.
  ZHU Z Q, WU Z C, CHEN Y C. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013 (in Chinese).
3 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报201536(8): 2507-2528.
  ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2507-2528 (in Chinese).
4 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报201937(4): 620-635.
  HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: A review of recent progress[J]. Acta Aerodynamica Sinica201937(4): 620-635 (in Chinese).
5 QIAN Z S, YANG X M. Key aerodynamic technologies of high Mach number civil transport[C]∥ Proceeding of Young Research Conference of the 5th International Forum of Aviation Research, 2014.
6 刘中臣, 钱战森, 冷岩. 声爆近场压力测量风洞试验技术研究进展[J]. 空气动力学学报201937(4): 636-645.
  LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica201937(4): 636-645 (in Chinese).
7 MAGLIERI D J, BOBBITT P J, Plotkin K J, et al. Sonic boom six decades of research: NASA/SP-2014-622 [R]. Washington, D.C.: NASA, 2014.
8 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报201937(4): 601-619.
  QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica201937(4): 601-619 (in Chinese).
9 刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报202041(4): 123596.
  LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica202041(4): 123596 (in Chinese).
10 CLIFF S, ELMILIGGUI A, AFTOSMIS M, et al. Design and evaluation of a pressure rail for sonic boom measurement in wind tunnels[C]∥ Seventh International Conference on Computational Fluid Dynamics (ICCFD7), 2012.
11 MORGENSTERN J. How to accurately measure low sonic boom or model surface pressure in supersonic wind tunnels[C]∥ 30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012.
12 MORGENSTERN J M. Distortion correction for low sonic boom measurement in wind tunnels: AIAA-2012-3216[R]. Reston: AIAA, 2012.
13 DURSTON D A, ELMILIGUI A A, CLIFF S E, et al. Experimental and computational sonic boom assessment of boeing N+2 low boom models[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
14 LIU X. Microarray data analysis using probabilistic methods[D]. Manchester: The University of Manchester, 2006:27-29.
15 HAO H, WANG H L, CHEN L, et al. Initial results from SQUID sensor: Analysis and modeling for the ELF/VLF atmospheric noise[J]. Sensors (Basel, Switzerland)201717(2): 371.
16 李志惠. 船舶低频通信中噪声幅度概率分布研究[J]. 舰船科学技术201840(6): 100-102.
  LI Z H. Study on the probability distribution of noise amplitude in low frequency communication[J]. Ship Science and Technology201840(6): 100-102 (in Chinese).
17 杨秋龙, 杨坤德, 马远良. 南海南部海域深海环境噪声统计特性分析[J]. 哈尔滨工程大学学报202041(10): 1419-1428.
  YANG Q L, YANG K D, MA Y L. Statistical characteristic analysis of ambient noise in deep sea of southern South China Sea[J]. Journal of Harbin Engineering University202041(10): 1419-1428 (in Chinese).
18 SUN X, YU Y B, YANG Y T, et al. Modeling and analysis of the ocean dynamic with Gaussian complex network[J]. Chinese Physics B202029(10): 678-687 (in Chinese).
19 CARLSON H W, MORRIS O A. Wind-tunnel sonic-boom testing techniques[J]. Journal of Aircraft19674(3): 245-249.
20 JACKSON C, CORLETT W A, MONTA W J. Description and calibration of the Langley unitary plan wind tunnel: NASA TP 1905 [R]. Washington, D.C.: NASA, 1981.
21 MORGENSTERN J M. Measurements supporting the 2014 first sonic boom workshop prediction cases: AIAA-2014-2007[R]. Reston: AIAA, 2014.
22 PARK M A, NEMEC M. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201856(3): 851-875.
23 RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201856(3): 876-895.
24 GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal19719(10): 2091-2093.
25 DARDEN C M. Sonic boom minimization with nose-bluntness: NASA TP 1979-1348[R]. Wangshington, D.C.: NASA, 1979.
Outlines

/