Radar-embedded communication waveform design with low complexity

  • Cheng’an ZHANG ,
  • Baoguo LI ,
  • Xiang WANG ,
  • Qiang XU
Expand
  • School of Electronic Science,National University of Defense Technology,Changsha 410073,China
E-mail: laglbg322@163.com

Received date: 2021-10-08

  Revised date: 2021-11-05

  Accepted date: 2021-11-15

  Online published: 2021-12-01

Supported by

Natural Science Foundation of Hunan Province(2019JJ10004)

Abstract

Radar-Embedded Communication (REC) is a covert communication method that uses Radio Frequency (RF) tags or transponders to generate communication signals, and hides the communication signals in the radar backscatter echo with the radar backscatter echo signal as the background. To meet the requirements for simple, compact and portable RF tags, a low-complexity REC communication waveform generation algorithm is proposed, which can greatly reduce the computational pressure of the RF tag transponder. Simulation analysis shows that the proposed algorithm can greatly reduce the processing gain of the interception receiver by adjusting waveform parameters, and thus increase the Low Probability of Interception (LPI) performance of the REC waveform without sacrificing the reliability and LPI of the REC waveform.

Cite this article

Cheng’an ZHANG , Baoguo LI , Xiang WANG , Qiang XU . Radar-embedded communication waveform design with low complexity[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 326471 -326471 . DOI: 10.7527/S1000-6893.2021.26471

References

1 ALI K, LIU A X, PEFKIANAKIS I, et al. Distributed spectrum sharing for enterprise powerline communication networks[J]. IEEE/ACM Transactions on Networking202129( 3): 1032- 1045.
2 JACOB S, MENON V G, JOSEPH S, et al. A novel spectrum sharing scheme using dynamic long short-term memory with CP-OFDMA in 5G networks[J]. IEEE Transactions on Cognitive Communications and Networking20206( 3): 926- 934.
3 丁国如, 孙佳琛, 王海超, 等. 复杂电磁环境下频谱智能管控技术探讨[J]. 航空学报202142( 4): 524750.
  DING G R, SUN J C, WANG H C, et al. Discussion on technologies for intelligent spectrum management and control under complex electromagnetic environments[J]. Acta Aeronautica et Astronautica Sinica202142( 4): 524750 (in Chinese).
4 WANG X Y, FEI Z S, GUO J, et al. RIS-assisted spectrum sharing between MIMO radar and MU-MISO communication systems[J]. IEEE Wireless Communications Letters202110( 3): 594- 598.
5 HONG B Q, WANG W Q, LIU C C. Interference utilization for spectrum sharing radar-communication systems[J]. IEEE Transactions on Vehicular Technology202170( 8): 8304- 8308.
6 赵玉振, 陈龙永, 张福博, 等. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报202110( 3): 453- 466.
  ZHAO Y Z, CHEN L Y, ZHANG F B, et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars202110( 3): 453- 466 (in Chinese).
7 JACYNA G M, FELL B, MCLEMORE D. A high-level overview of fundamental limits studies for the DARPA SSPARC program[C]∥ 2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016: 1- 6.
8 BLUNT S D, YATHAM P, STILES J. Intrapulse radar-embedded communications[J]. IEEE Transactions on Aerospace and Electronic Systems201046( 3): 1185- 1200.
9 KARIMI M, SADOUGH S M S, TORABI M. Optimal cognitive radio spectrum access with joint spectrum sensing and power allocation[J]. IEEE Wireless Communications Letters20209( 1): 8- 11.
10 王碧雯. 低截获直扩信号检测方法研究[D]. 成都: 电子科技大学, 2016: 1- 5.
  WANG B W. Research on low probability intercept spread spectrum signal detection algorithm[D]. Chengdu: University of Electronic Science and Technology of China, 2016: 1- 5 (in Chinese).
11 METCALF J G, SAHIN C, BLUNT S D. Impact of adjacent/overlapping communication waveform design within a radar spectrum sharing context[C]∥ 2020 IEEE International Radar Conference. Piscataway: IEEE Press, 2020: 472- 477.
12 BLUNT S D, STILES J, ALLEN C, et al. Diversity aspects of radar-embedded communications[C]∥ 2007 International Conference on Electromagnetics in Advanced Applications. Piscataway: IEEE Press, 2007: 439- 442.
13 BLUNT S D, YANTHAM P. Waveform design for radar-embedded communications[C]∥ 2007 International Waveform Diversity and Design Conference. Piscataway: IEEE Press, 2007: 214- 218.
14 BLUNT S D, COOK M R, STILES J. Embedding information into radar emissions via waveform implementation[C]∥ 2010 International Waveform Diversity and Design Conference. Piscataway: IEEE Press, 2010: 195- 199.
15 BLUNT S D, YATHAM P, STILES J. Intrapulse radar-embedded communications[C]∥ IEEE Transactions on Aerospace and Electronic Systems. Piscataway: IEEE Press, 2011: 1185- 1200.
16 BLUNT S D, METCALF J G, BIGGS C R, et al. Performance characteristics and metrics for intra-pulse radar-embedded communication[J]. IEEE Journal on Selected Areas in Communications201129( 10): 2057- 2066.
17 METCALF J G, SAHIN C, BLUNT S D, et al. Analysis of symbol-design strategies for intrapulse radar-embedded communications[J]. IEEE Transactions on Aerospace and Electronic Systems201551( 4): 2914- 2931.
18 CIUONZO D, DE MAIO A, FOGLIA G, et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems201551( 4): 2960- 2974.
19 SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]∥ 2017 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2017: 1498- 1503.
20 SAHIN C, METCALF J G, HIMED B. Reduced complexity maximum SINR receiver processing for transmit-encoded radar-embedded communications[C]∥ 2018 IEEE Radar Conference (RadarConf18). Piscataway: IEEE Press, 2018: 1317- 1322.
21 MAI C Y, SUN J P, ZHOU R, et al. Sparse frequency waveform design for radar-embedded communication[J]. Mathematical Problems in Engineering20162016: 7270301.
Outlines

/