Articles

Automatic transition prediction for natural-laminar-flow wing design of supersonic transports

  • NIE Han ,
  • SONG Wenping ,
  • HAN Zhonghua ,
  • CHEN Jianqiang ,
  • DUAN Maochang ,
  • WAN Bingbing
Expand
  • 1. Research Center for Environment-Friendly Supersonic Civil Transports (ReCESST)/Institute of Aerodynamic and Multidisciplinary Design Optimization, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    3. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-09-09

  Revised date: 2021-09-26

  Online published: 2021-12-01

Supported by

National Natural Science Foundation of China (12072285, 11972305); Shaanxi Science Fund for Distinguished Young Scholars (2020JC-13); National Numerical Windtunnel Project (2018-ZT1A03)

Abstract

Automatic transition prediction is crucial for the natural-laminar-flow wing design of supersonic transports. Traditional transition prediction methods for low speed and transonic laminar-flow wing design generally only consider 2D Tollmien-Schlichting (TS) waves and stationary Crossflow (CF) waves, which are not suitable for prediction of flow transition induced by oblique TS or traveling CF waves in supersonic boundary layers. This study develops an eN transition prediction method with an improved amplification factor computation strategy, taking into account three-dimensional oblique TS waves and traveling CF waves. This method adopts the fixed-wave-angle and fixed-frequency methods to search for unstable TS and CF modes and the fixed-transverse-wavenumber-and-fixed-frequency method or the envelope method to compute amplification factors of perturbations. The method is further coupled with a Reynolds-Averaged Navier-Stokes equation (RANS) solver for automatic transition prediction in flow simulation. The proposed method is used to analyze boundary-layer stability of NASA's experiment 65°-swept-wing at Mach number 2.0. The computed amplification factors of traveling and stationary CF waves agree well with the results in the reference work. Furthermore, the proposed method is applied to natural-laminar-flow design of an infinite-span swept wing with a swept angle of 60° at Mach number 2.0, Reynolds number 1.39×107. We propose an ideal pressure distribution which quickly accelerates the flow near the leading edge and then keeps it in a mild pressure gradient. The designed wing is evaluated and nearly full laminar flow is observed over the upper surface, indicating the applicability of our method for aerodynamic design of the natural-laminar-flow wing of supersonic transports.

Cite this article

NIE Han , SONG Wenping , HAN Zhonghua , CHEN Jianqiang , DUAN Maochang , WAN Bingbing . Automatic transition prediction for natural-laminar-flow wing design of supersonic transports[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526342 -526342 . DOI: 10.7527/S1000-6893.2021.26342

References

[1] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft:A review of recent progress[J]. Aata Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese).
[2] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J/OL]. 航空学报, (2021-11-22)[2021-11-25]. https://kns.cnki.net/kcms/detail/11.1929.V.20211122.1025.002.html. DING Y L, HAN Z H, QIAO J L, et al. Research progress of key technologies for conceptual-aerodynamic cofiguration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, (2021-11-22)[2021-11-25]. https://kns.cnki.net/kcms/detail/11.1929.V.20211122.1025.002.html (in Chinese).
[3] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146.
[4] International Air Transport Association. Aircraft technology roadmap to 2050[R]. Montreal:International Air Transport Association, 2019.
[5] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory:ES 26388[R]. Long Beach:Douglas Aircraft Division, 1956.
[6] SARIC W. Physical description of boundary-layer transition:Experimental evidence:19940029379[R]. Paris:AGARD, 1994
[7] ARNAL D. Boundary layer transition:Predictions based on linear theory:AGARD-R-793[R]. Paris:AGARD, 1994.
[8] MACK L M. Boundary-layer linear stability theory:19840025688[R]. Paris:AGARD, 1984.
[9] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6):124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124317(in Chinese).
[10] THEOFILIS V. Advances in global linear instability analysis of nonparallel and three-dimensional flows[J]. Progress in Aerospace Sciences, 2003, 39(4):249-315.
[11] KOSAREV L, SÉROR S, LIFSHITZ Y. Parabolized stability equations code with automatic inflow for swept wing transition analysis[J]. Journal of Aircraft, 2016, 53(6):1647-1669.
[12] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29:245-283.
[13] XU G L, CHEN J Q, LIU G, et al. The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow[J]. Journal of Fluid Mechanics, 2019, 873:914-941.
[14] CHEN X, CHEN J Q, YUAN X X, et al. From primary instabilities to secondary instabilities in Görtler vortex flows[J]. Advances in Aerodynamics, 2019, 1(1):379-391.
[15] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355.
[16] BÉGOU G, DENIAU H, VERMEERSCH O, et al. Database approach for laminar-turbulent transition prediction:Navier-Stokes compatible reformulation[J]. AIAA Journal, 2017, 55(11):3648-3660.
[17] NIE H, SONG W P, HAN Z H, et al. A surrogate-based eN method for compressible boundary-layer transition prediction[J]. Journal of Aircraft, 2021, 59(1):89-102.
[18] ARNAL D, CASALIS G, HOUDEVILLE R. Practical transition prediction methods:Subsonic and transonic flows:AVT-151RTO-8[R]. Belgium:Von Karman Institution, 2008.
[19] GLEYZES C, COUSTEIX J, BONNET J L. Theoretical and experimental study of low Reynolds number transitional separation bubbles:UNDAS-CP-77B123[R]. Notre Dame:University of Notre Dame, 1985.
[20] ARNAL D, HOUDEVILLE R, SÉRAUDIE A, et al. Overview of laminar-turbulent transition investigations at ONERA Toulouse:AIAA-2011-3074[R]. Reston:AIAA, 2011.
[21] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[22] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston:AIAA, 2015.
[23] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187.
[24] TU G H, DENG X G, MAO M L. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(4):805-811.
[25] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9):625711. XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):625711(in Chinese).
[26] PASCAL L, DELATTRE G, DENIAU H, et al. Stability-based transition model using transport equations[J]. AIAA Journal, 2020, 58(7):2933-2942.
[27] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2):213-228. SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2):213-228(in Chinese).
[28] KRUMBEIN A. Automatic transition prediction and application to three-dimensional wing configurations[J]. Journal of Aircraft, 2007, 44(1):119-133.
[29] KRUMBEIN A, KRIMMELBEIN N, SCHRAUF G. Automatic transition prediction in hybrid flow solver, part 1:Methodology and sensitivities[J]. Journal of Aircraft, 2009, 46(4):1176-1190.
[30] KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[J]. Journal of Aircraft, 2011, 48(6):1878-1887.
[31] KRUMBEIN A, KRIMMELBEIN N, GRABE C. Streamline-based transition prediction techniques in an unstructured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5):1548-1564.
[32] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.
[33] FISCHER J S, SOEMARWOTO B I, VAN DER WEIDE E T A. Automatic transition prediction in a Navier-Stokes solver using linear stability theory[J]. AIAA Journal, 2021, 59(7):2409-2426.
[34] 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测[M]. 北京:科学出版社, 2015. ZHOU H, SU C H, ZHANG Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layer[M]. Beijing:Science Press, 2015(in Chinese).
[35] 唐登斌. 后掠翼可压缩三维边界层稳定性计算[J]. 航空学报, 1992, 13(1):1-7. TANG D B. The calculation of three-dimensional compressible boundary layer stability on swept wings[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(1):1-7(in Chinese).
[36] 张坤, 宋文萍. NS方程计算中耦合转捩自动判断的阻力精确计算方法初探[J]. 空气动力学学报, 2009, 27(4):400-404. ZHANG K, SONG W P. Accurate drag calculation by coupling automatic prediction of transition point to the Navier-Stokes method[J]. Acta Aerodynamica Sinica, 2009, 27(4):400-404(in Chinese).
[37] 张坤, 宋文萍. eN方法在无限展长后掠翼边界层转捩判断中的初步应用[J]. 西北工业大学学报, 2011, 29(1):142-147. ZHANG K, SONG W P. Application of the full eN transition method to the infinite swept-wing's transition prediction[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):142-147(in Chinese).
[38] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHU Z, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese).
[39] 左岁寒, 杨永, 李栋. 基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J]. 计算物理, 2010, 27(5):665-670. ZUO S H, YANG Y, LI D. Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J]. Chinese Journal of Computational Physics, 2010, 27(5):665-670(in Chinese).
[40] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese).
[41] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese).
[42] 黄章峰, 万兵兵, 段茂昌. 高超声速流动稳定性及转捩工程应用若干研究进展[J]. 空气动力学学报, 2020, 38(2):368-378. HUANG Z F, WAN B B, DUAN M C. Progresses in engineering application research on hypersonic flow stability and transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):368-378(in Chinese).
[43] XU J K, HAN X, QIAO L, et al. Fully local amplification factor transport equation for stationary crossflow instabilities[J]. AIAA Journal, 2019, 57(7):2682-2693.
[44] XU J K. Linear amplification factor transport equation for stationary crossflow instabilities in supersonic boundary layers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2021, 235(6):703-717.
[45] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47.
[46] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012:706-715.
[47] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese).
[48] FAN T L, SONG W P, CHEN J, et al. Hybrid optimization design of natural-laminar-flow(NLF) supercritical airfoil and infinite swept wing:AIAA-2017-3061[R]. Reston:AIAA, 2017.
[49] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[50] CHI J B, HAN Z H, FAN T L, et al. Hybrid inverse/optimization design approach for transonic natural-laminar-flow airfoils:AIAA-2019-1475[R]. Reston:AIAA, 2019.
[51] XU Z M, HAN Z H, CHI J B, et al. Crossflow instability analysis for swept laminar flow wings using crossflow pressure gradient[J]. AIAA Journal, 2021, 59(8):2878-2889.
[52] SCHLICHTING H, GERSTEN K. Boundary layer theory[M]. 9th ed. Berlin, Heidelberg:Springer, 2017:466.
[53] UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6):1294-1306.
[54] NIU H B, YI S H, LIU X L, et al. Experimental investigation of boundary layer transition over a delta wing at Mach number 6[J]. Chinese Journal of Aeronautics, 2020, 33(7):1889-1902.
[55] WAN B B, TU G H, YUAN X X, et al. Identification of traveling crossflow waves under real hypersonic flight conditions[J]. Physics of Fluids, 2021, 33(4):044110.
[56] LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports:AIAA-2016-4327[R]. Reston:AIAA, 2016.
[57] MACK L M. On the stability of the boundary layer on a transonic swept wing:AIAA-1979-0264[R]. Reston:AIAA, 1979.
[58] MACK L M. Stability of three-dimensional boundary layers on swept wings at transonic speeds[M]//ZIEREP J, OERTEL H. Symposium Transsonicum III. Berlin, Heidelberg:Springer, 1989:209-223.
[59] ARNAL D, CASALIS G, HOUDEVILLE R. Practical transition prediction methods:Subsonic and transonic flows:RTO-EN-AVT-151-07[R]. Belgium:NATO, 2008.
[60] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91.
[61] JOSLIN R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics, 1998, 30:1-29.
[62] OWENS L R, BEELER G, KING R, et al. Supersonic traveling crossflow wave characteristics in ground and flight tests:AIAA-2020-0777[R]. Reston:AIAA, 2020.
[63] HAN Z H, HE F, SONG W P, et al. A preconditioned multigrid method for efficient simulation of three-dimensional compressible and incompressible flows[J]. Chinese Journal of Aeronautics, 2007, 20(4):289-296.
[64] HAN Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016.
[65] HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1):31-47.
[66] 韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese).
[67] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):925-943.
Outlines

/