ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Modeling and docking control of UAV aerial recovery in form of telescopic boom
Received date: 2021-09-02
Revised date: 2021-10-11
Accepted date: 2021-11-25
Online published: 2021-12-01
Supported by
National Natural Science Foundation of China(61903190);Aeronautical Science Foundation(2019ZA052006);Fundamental Research Funds for the Central Universities(NT2020005);Natural Science Foundation of Jiangsu Province of China(BK20190401);Project Funded by China Postdoctoral Science Foundation(2020M681588);Jiangsu Postdoctoral Research Funding Program(2021K428C);Foundation of Science and Technology on UAV Laboratory(2022-JCJQ-LB-071)
To handle the problem of aerial recovery of small fixed-wing Unmanned Aerial Vehicle (UAV) without reliable land-based or sea-based landing platforms, a modeling and docking control method for grabbing aerial recovery with the telescopic boom is proposed. Firstly, inspired by the flying boom aerial refueling technology, a UAV recovery method based on telescopic boom grabbing is proposed. An affine nonlinear model for telescopic boom aerial recovery is constructed using the mass projection method of rigid body rotational inertia and the Lagrangian method. Secondly, the aerodynamic characteristic of the telescopic boom under the influence of tailing vortex and constant wind disturbance is analyzed. Thirdly, a finite-time convergence nonsingular fast terminal sliding mode disturbance observer is designed to accurately estimate the lumped disturbances including the effects of the turbulence related items and the unmeasurable transient model disturbances in the three channels of the telescopic boom. With the feed-forward compensations of these lumped disturbances, a disturbance observation based nonsingular fast terminal sliding mode docking control method is proposed to achieve rapid and accurate aerial docking between the telescopic boom and UAVs with multiple turbulences. Therewith, Stability of the closed-loop system is discussed with Lyapunov analysis. Finally, the simulation results show that the proposed method has higher control accuracy and better anti-disturbance ability.
Zikang SU , Zhongnan XU , Chuntao LI , Haitong CHEN , Honglun WANG . Modeling and docking control of UAV aerial recovery in form of telescopic boom[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 326315 -326315 . DOI: 10.7527/S1000-6893.2021.26315
1 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
2 | BEARD R W, MCLAIN T W, NELSON D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs[J]. Proceedings of the IEEE, 2006, 94(7): 1306-1324. |
3 | SU Z K, WANG X W, WANG H L, Neural-adaptive constrained flight control for air ground recovery under terrain obstacles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(1): 374-390. |
4 | SU Z K, LI C T, ZHEN Z Y. Anti-disturbance constrained control of the air recovery carrier via an integral barrier Lyapunov function[J]. Aerospace Science and Technology, 2020, 106: 106157. |
5 | 宋怡然, 申超, 李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹, 2016(8): 17-22. |
SONG Y R, SHEN C, LI D B. Research progress of distributed low-cost UAV cluster in America[J]. Aerodynamic Missile Journal, 2016(8): 17-22 (in Chinese). | |
6 | SUN L, BEARD R W, COLTON M B, et al. Dynamics and control of cable-drogue system in aerial recovery of micro air vehicles based on Gauss's principle[C]∥ Proceedings of the 2009 conference on American Control Conference. New York: ACM, 2009. |
7 | SU Z K, LI C T, LIU Y H. Anti-disturbance dynamic surface trajectory stabilization for the towed aerial recovery drogue under unknown airflow disturbances[J]. Mechanical Systems and Signal Processing, 2021, 150: 107342. |
8 | SMITH J, KUNZ D. Simulation of the dynamically coupled KC-135 tanker and flying boom: AIAA-2007-6711[R]. Reston: AIAA, 2007. |
9 | SMITH J, KUNZ D. Dynamic coupling of the KC-135 tanker and boom for modeling and simulation[J]. Journal of Aircraft, 2007, 44(3): 1034-1039. |
10 | 薛建平, 陈博, 王小平. 空中加油伸缩套管控制研究[J]. 飞行力学, 2008, 26(4): 14-18. |
XUE J P, CHEN B, WANG X P. Control law research on aerial refueling boom[J]. Flight Dynamics, 2008, 26(4): 14-18 (in Chinese). | |
11 | 高久安, 贾秋玲. 自动空中加油杆LQR控制器设计[J]. 电子设计工程, 2014, 22(2): 102-104. |
GAO J A, JIA Q L. LQR controller design for boom air-refueling bar[J]. Electronic Design Engineering, 2014, 22(2): 102-104 (in Chinese). | |
12 | 李俊国. 蜂群式固定翼无人机空基回收系统设计及动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-47. |
LI J G. Design and dynamics analysis of air base recovery system for colony type fixed wing UAV[D]. Harbin: Harbin Institute of Technology, 2017: 1-47 (in Chinese). | |
13 | 姚来鹏, 侯保林, 刘曦. 采用摩擦补偿的弹药传输机械臂自适应终端滑模控制[J]. 上海交通大学学报, 2020, 54(2): 144-151. |
YAO L P, HOU B L, LIU X. Adaptive terminal sliding mode control of a howitzer shell transfer arm with friction compensation[J]. Journal of Shanghai Jiao Tong University, 2020, 54(2): 144-151 (in Chinese). | |
14 | FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167. |
15 | ZAARE S, SOLTANPOUR M R. Adaptive fuzzy global coupled nonsingular fast terminal sliding mode control of n-rigid-link elastic-joint robot manipulators in presence of uncertainties[J]. Mechanical Systems and Signal Processing, 2022, 163: 108165. |
16 | 何雪涛, 程源, 黄钟,等. 齐次坐标变换在空间机构分析中的应用[J]. 北京化工大学学报(自然科学版), 1999, 26(1): 41-44. |
HE X T, CHENG Y, HUANG Z, et al. Transformation of homogeneous coordinates and its application in the analysis of spatial mechanism[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 1999, 26(1): 41-44 (in Chinese). | |
17 | 王永超. 刚体转动惯量的质量投影法[J]. 大学物理, 2010, 29(9): 16-18, 29. |
WANG Y C. The mass projection method of rigid body rotational inertia[J]. College Physics, 2010, 29(9): 16-18, 29 (in Chinese). | |
18 | 刘鹏, 王强, 张伟. 机械臂动力学建模及控制仿真[J]. 自动化与仪表, 2017, 32(3): 9-12. |
LIU P, WANG Q, ZHANG W. Dynamics modeling and control simulation of manipulator[J]. Automation & Instrumentation, 2017, 32(3): 9-12 (in Chinese). | |
19 | 陈博, 董新民, 徐跃鉴, 等. 加油机尾流场建模与仿真分析[J]. 飞行力学, 2007, 25(4): 73-76. |
CHEN B, DONG X M, XU Y J, et al. Modeling and simulation of the tanker's wake field[J]. Flight Dynamics, 2007, 25(4): 73-76 (in Chinese). | |
20 | SU Z K, WANG H L, YAO P, et al. Back-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refueling[J]. Aerospace Science and Technology, 2017, 61: 95-108. |
21 | 王福军. 计算流体动力学分析CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 1-272. |
WANG F J. Computational fluid dynamics analysis: Principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 1-272 (in Chinese). | |
22 | UMENO T, HORI Y. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design[J]. IEEE Transactions on Industrial Electronics, 1991, 38(5): 363-368. |
23 | UTKIN V. Variable structure systems with sliding modes[J]. IEEE Transactions on Automatic Control, 1977, 22(2): 212-222. |
24 | SU Z K, WANG H L, LI N. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose[J]. Mechanical Systems and Signal Processing, 2018, 104: 87-105. |
25 | YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. |
26 | ZUO Z Y. Non-singular fixed-time terminal sliding mode control of non-linear systems[J]. IET Control Theory and Applications, 2015, 9(4): 545-552. |
27 | ZHANG T, ZHANG M H, ZOU Y B. Time-optimal and smooth trajectory planning for robot manipulators[J]. International Journal of Control, Automation and Systems, 2021, 19(1): 521-531. |
28 | 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23. |
HAN J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23 (in Chinese). |
/
〈 |
|
〉 |