ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Arrival time processing method of pulsar characteristic frequency signals
Received date: 2021-08-02
Revised date: 2021-09-09
Accepted date: 2021-11-18
Online published: 2021-12-01
Supported by
National Natural Science Foundation of China(11973021);Pulsar Navigation Project(GFZX0301010501)
Pulsar navigation is the most potential technology for autonomous management of the satellite in deep space exploration. However, the extremely low flux of pulsar signals limits the signal-to-noise ratio, and challenges high precision navigations. Only breakthrough is achieved in pulsar signal processing can the miniaturization of pulsar navigation system be solved and realized. In this paper, we analyze the problems in pulsar navigation, discuss the route of application for pulsar navigation, and propose a possible scheme for pulsar navigation systems. The Cramer-Rao Bound of the proposed scheme is analyzed and the scheme is demonstrated in simulations using the data of Crab Pulsar. Simulation result shows that the proposed pulsar signal processing scheme can achieve positioning accuracy of 3 km in the direction of Crab Pulsar vector, which is accordance with theoretical expectation.
Guodong XU , Danlei ZHANG , Zhendong XU . Arrival time processing method of pulsar characteristic frequency signals[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526185 -526185 . DOI: 10.7527/S1000-6893.2021.26185
1 | HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713. |
2 | DOWNS G. Interplanetary navigation using pulsating radio sources: NASA-CR-140398[R]. Washington, D.C.: NASA, 1974. |
3 | SALA J, URRUELA A, VILLARES X, et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information:18148/04/NL/MV[R]. Paris: ESA, 2004. |
4 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation [D]. College Park: University of Maryland, 2005. |
5 | MITCHELL J W, HASSOUNEH M, WINTERNITZ L, et al. SEXTANT - station explorer for X-ray timing and navigation technology: AIAA-2015-0865[R]. Reston: AIAA, 2015. |
6 | 刘群. 脉冲星导航技术研发创新管理方法[J]. 航天工业管理, 2018(10): 41-44. |
LIU Q. Innovation management methods of pulsar navigation technology research and development[J]. Aerospace Industry Management, 2018(10): 41-44 (in Chinese). | |
7 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
8 | 张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据处理与分析[J]. 宇航学报, 2018, 39(4): 411-417. |
ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics, 2018, 39(4): 411-417 (in Chinese). | |
9 | 贾淑梅, 黄跃, 马想, 等. 硬X射线调制望远镜卫星科学观测应用初步评价[J]. 航天器工程, 2018, 27(5): 168-174. |
JIA S M, HUANG Y, MA X, et al. Preliminary evaluation for scientific observations application of HXMT satellite[J]. Spacecraft Engineering, 2018, 27(5): 168-174 (in Chinese). | |
10 | ZHANG S, ZHANG S N, LU F J, et al. The insight-HXMT mission and its recent progresses[C]∥Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. San Francisco: SPIE, 2018: 434-455. |
11 | LIU L, ZHENG W, TANG G J. Autonomous positioning of satellite constellations via X-ray pulsar measurements[J]. Journal of Navigation, 2013, 66(5): 671-682. |
12 | SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J].Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63. |
13 | FEDOTOV M G. CCD detectors for X-ray synchrotron radiation application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 448(1-2): 192-195. |
14 | 谢振华, 许录平, 倪广仁. 基于最大似然的X射线脉冲星空间定位研究[J]. 宇航学报, 2007, 28(6): 1605-1608, 1642. |
XIE Z H, XU L P, NI G R. X-ray pulsars-based spacecrafts' position determination algorithm based on maximum likelihood estimation[J]. Journal of Astronautics, 2007, 28(6): 1605-1608, 1642 (in Chinese). | |
15 | 谢振华, 许录平, 倪广仁, 等. 基于一维选择线谱的脉冲星辐射脉冲信号辨识[J]. 红外与毫米波学报, 2007, 26(3): 187-190, 195. |
XIE Z H, XU L P, NI G R, et al. Pulsar signal recognition based on one-dimension selected line spectra[J]. Journal of Infrared and Millimeter Waves, 2007, 26(3): 187-190, 195 (in Chinese). | |
16 | TAYLOR J H. Pulsar timing and relativistic gravity[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1992, 341(1660): 117-134. |
17 | 吕振肃, 熊景松. 基于互相关和最大似然估计的弱信号检测[J]. 武汉科技大学学报(自然科学版), 2007, 30(4): 398-400. |
LU Z S, XIONG J S. Weak signal detection based on cross-correlation and maximum likelihood estimation[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2007, 30(4): 398-400 (in Chinese). | |
18 | 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015. |
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015 (in Chinese). | |
19 | XIONG K, WEI C L, LIU L D. The use of X-ray pulsars for aiding navigation of satellites in constellations[J]. Acta Astronautica, 2009, 64(4): 427-436. |
20 | ROCHA J G V DA, LANCEROS-MENDEZ S. 3-D modeling of scintillator-based X-ray detectors[J]. IEEE Sensors Journal, 2006, 6(5): 1236-1242. |
21 | ALVAREZ J S, PLANAS A U, PIERA N J V, et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information: 18148/04/NL/MV[R]. Paris: ESA, 2004. |
22 | EMADZADEH A A, SPEYER J L. Navigation in space by X-ray pulsars[M]. New York: Springer New York, 2011. |
23 | 徐国栋. 脉冲星导航概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014. |
XU G D. Introduction to pulsar navigation[M]. Harbin: Harbin Institute of Technology Press, 2014 (in Chinese). | |
24 | 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法[J]. 物理学报, 2015, 64(21): 219702. |
SONG J N, XU G D, LI P F. Multiple harmonic X-ray pulsar signal phase estimation method[J]. Acta Physica Sinica, 2015, 64(21): 219702 (in Chinese). | |
25 | SONG J N, QU J W, XU G D. Modified kernel regression method for the denoising of X-ray pulsar profiles[J]. Advances in Space Research, 2018, 62(3): 683-691. |
26 | SONG J N, XU G D. An initial orbit determination method from relative position increment measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(6): 1149-1158. |
/
〈 |
|
〉 |