Solid Mechanics and Vehicle Conceptual Design

System-of-systems contribution evaluation of ground-attack UCAV based on ABMS

  • LIU Wenjin ,
  • PEI Yang ,
  • GE Yuxue ,
  • AI Junqiang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Key Laboratory of Aircraft System of Systems Contribution and Synthetic Design, Ministry of Industry and Information Technology, Xi’an 710072, China;
    3. The First Aircraft Institute, Aviation Industry Corporation of China, Xi’an 710089, China

Received date: 2021-06-17

  Revised date: 2021-07-06

  Online published: 2021-12-01

Supported by

Aeronautical Science Foundation of China (20185153032)

Abstract

To solve the highly subjective and poorly satisfaction of system-of-systems operational requirements problems in the traditional combat effectiveness evaluation methods, an evaluation method of system-of-systems contribution rate based on Agent-Based Modeling and Simulation (ABMS) is proposed and applies for the evaluation of ground-attack UCAV. Firstly, the evaluation framework of the method is established. Then, a hierarchical modular agent model including behavior layer, function layer, and parameter layer is constructed. Subsequently, the effectiveness evaluation index is proposed in three aspects: combat effect, efficiency, and cost. Finally, taking a confrontation scenario composed of ground-attack UCAV and air defense system as an example, the contribution rate of UCAV with different stealth capabilities and cruising speeds, and the number of UCAV to system-of-systems is evaluated. Results show that the contribution rates of high stealth aircraft and high-speed aircraft are generally high, but the influence modes of stealth capability and cruise speed on contribution rate are different. Results also show the increase of UCAV number will increase the contribution rates, but there is a saturation value.

Cite this article

LIU Wenjin , PEI Yang , GE Yuxue , AI Junqiang . System-of-systems contribution evaluation of ground-attack UCAV based on ABMS[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(9) : 225972 -225972 . DOI: 10.7527/S1000-6893.2021.25972

References

[1] WANG C, DONG Y F, XU G H, et al. Combat effectiveness assessment of ground-attack UCAV based on maximizing deviation[J]. Fire Control & Command Control, 2016, 41(11): 62-65 (in Chinese). 王超, 董彦非, 徐冠华, 等. 基于离差最大化的对地攻击型无人机作战效能评估[J]. 火力与指挥控制, 2016, 41(11): 62-65.
[2] GAO F, ZHANG A, BI W H. Weapon system operational effectiveness evaluation based on the belief rule-based system with interval data[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(5): 6687-6701.
[3] LI Q, YAN J, ZHU J Q, et al. State of art and development trends of top-level demonstration technology for aviation weapon equipment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 1-16 (in Chinese). 李清, 闫娟, 朱家强, 等. 航空武器装备顶层论证技术发展现状与趋势[J]. 航空学报, 2016, 37(1): 1-16.
[4] LUO C K, CHEN Y X, XIANG H C, et al. Review of the evaluation methods of equipment's contribution rate to system-of-systems[J]. Systems Engineering and Electronics, 2019, 41(8): 1789-1794 (in Chinese). 罗承昆, 陈云翔, 项华春, 等. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(8): 1789-1794.
[5] YANG K W, YANG Z W, TAN Y J, et al. Review of the evaluation methods of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41(2): 311-321 (in Chinese). 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(2): 311-321.
[6] BRAAFLADT A, STEFFENS M J, MAVRIS D N. Tradespace exploration and analysis using mission effectiveness in aircraft conceptual design[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1127.
[7] ZHANG R W, SONG B F, PEI Y, et al. Agent-based analysis of multi-UAV area monitoring mission effectiveness[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 3151.
[8] TRAN H T, DOMERÇANT J C, MAVRIS D N. Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2015, 12(4): 405-422.
[9] YUN Q J, SONG B F, PEI Y, et al. Analysis of the factors influencing the combat effectiveness of airborne laser weapon system based on Agent modeling[J]. Systems Engineering and Electronics, 2020, 42(4): 826-835 (in Chinese). 郧奇佳, 宋笔锋, 裴扬, 等. 基于Agent建模的机载激光武器系统作战效能影响因素分析[J]. 系统工程与电子技术, 2020, 42(4): 826-835.
[10] TRAN H T, DOMERÇANT J C, MAVRIS D N. Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2015, 12(4): 405-422.
[11] SCHUMANN B, FERRARO M, SURENDRA A, et al. Better design decisions through operational modeling during the early design phases[J]. Journal of Aerospace Information Systems, 2014, 11(4): 195-210.
[12] GAO Y, LIU H, ZHOU Y M. An evaluation method of combat aircraft contribution effectiveness based on mission success space design[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1): 273-286.
[13] BAI J P, LI T. Evaluation of penetration mission effectiveness oriented to fighter performance parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 122-132 (in Chinese). 白金鹏, 李天. 面向指标论证的战斗机突防效能评估[J]. 航空学报, 2016, 37(1): 122-132.
[14] FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005:28-31 (in Chinese). 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005:28-31.
[15] GUNDLACH J. Designing unmanned aircraft systems[M]. Reston: AIAA, 2012.
[16] JOHNSON J. Analysis of image forming systems[C]//Proceedings of SPIE, Vol.513, Part One and Part Two. Bellingham: U.S.Army Research and Development Laboratories, 1985: 761.
[17] YOU R R, WANG X W, REN P D, et al. Target observation performance evaluation method for video surveillance based on Johnson criteria[J]. Infrared and Laser Engineering, 2016, 45(12): 1217003 (in Chinese). 游瑞蓉, 王新伟, 任鹏道, 等. 约翰逊准则的视频监控目标检测性能评估方法[J]. 红外与激光工程, 2016, 45(12): 1217003.
[18] FU X J, LI P. The analysis on hit probability of semi-active laser guided air-to-ground missile weapon system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 49-52 (in Chinese). 符新军, 李鹏. 激光半主动制导空地导弹武器系统命中概率分析[J]. 弹箭与制导学报, 2011, 31(4): 49-52.
[19] PEI Y, SONG B F, SHI S. Analysis method of aircraft combat survivability: Progress and challenge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 216-234 (in Chinese). 裴扬, 宋笔锋, 石帅. 飞机作战生存力分析方法研究进展与挑战[J]. 航空学报, 2016, 37(1): 216-234.
[20] RICHARDS M. Fundamentals of radar signal processing[M]. New York: McGraw Hill, 2005: 353-355.
[21] YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.
[22] TIAN Y L, WANG Y Q, XIONG P S, et al. Structured simulation platform architecture for fighter cloud operations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1938-1945 (in Chinese). 田永亮, 王永庆, 熊培森, 等. 面向战斗机云作战的构造型仿真平台架构[J]. 北京航空航天大学学报, 2019, 45(10): 1938-1945.
[23] LUO C K, CHEN Y X, HU X, et al. Evaluation method of equipment’s contribution rate to system-of-systems based on operation loop and self-information quantity[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 741-748 (in Chinese). 罗承昆, 陈云翔, 胡旭, 等. 基于作战环和自信息量的装备体系贡献率评估方法[J]. 上海交通大学学报, 2019, 53(6): 741-748.
[24] ZHAO D L, TAN Y J, LI J C, et al. Armament system of systems contribution evaluation based on operation loop[J]. Systems Engineering and Electronics, 2017, 39(10): 2239-2247 (in Chinese). 赵丹玲, 谭跃进, 李际超, 等. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39(10): 2239-2247.
Outlines

/