Experimental design of aeroelastic load with supersonic low frequency and large buffeting

  • HOU Yingyu ,
  • LI Qi ,
  • JI Chen ,
  • LIU Ziqiang
Expand
  • 1. China Aerospace Aerodynamic Technology Research Institute, Beijing 100074, China;
    2. Beijing Institue of Spacecraft System Engineering, Beijing 100094, China

Received date: 2021-09-28

  Revised date: 2021-10-26

  Online published: 2021-11-23

Supported by

Major Mars Exploration Project

Abstract

In order to study the vibration and load characteristics of the structure in the flow field under supersonic conditions and determine the structural safety of the aircraft, the load test of the corresponding model is needed.However, due to the limitations of wind tunnel size and similarity ratio, there are great difficulties in elastic model design, excitation, calibration, measurement and so on.This paper introduces the dynamic load test technology of Mars entry module model, small-scale structural load measurement technology and internal transmission excitation technology involved in the elastic model load test of the test.The design requirements of these three technologies, the shortcomings of traditional test methods, technical implementation scheme and technical implementation effect are introduced.The static and dynamic load test platform of Mars entry module model is established by using the above three technologies, and the wind tunnel test is completed.The test results show that the above test technology can effectively complete the load measurement of aircraft, and the measurement results are authentic, feasible and effective.In addition, it is also proved that under the test conditions, the aircraft structure will not have the phenomenon of vibration divergence and the structure will not be damaged.

Cite this article

HOU Yingyu , LI Qi , JI Chen , LIU Ziqiang . Experimental design of aeroelastic load with supersonic low frequency and large buffeting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 626454 -626454 . DOI: 10.7527/S1000-6893.2021.26454

References

[1] 耿言, 周继时, 李莎, 等.我国首次火星探测任务[J].深空探测学报, 2018, 5(5):399-405. GENG Y, ZHOU J S, LI S, et al.A brief introduction of the first Mars exploration mission in China[J].Journal of Deep Space Exploration, 2018, 5(5):399-405(in Chinese).
[2] 战培国.国外火星飞机及火星风洞研究[J].航空科学技术, 2011, 22(3):10-12. ZHANP G.Review of Mars airplane and Mars wind tunnel[J].Aeronautical Science & Technology, 2011, 22(3):10-12(in Chinese).
[3] WITKOWSKI A, KANDIS M, ADAMS D S.Mars science laboratory parachute system performance[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference.Re-ston:AIAA, 2013:1277.
[4] BIBRING J P, LANGEVIN Y, GENDRIN A, et al.Mars surface diversity as revealed by the OMEGA/Mars Express observations[J].Science, 2005, 307(5715):1576-1581.
[5] 陈桂彬,邹丛青, 杨超.气动弹性设计基础[M].北京:北京航空航天大学出版社, 2004. CHEN G B, ZOU C Q, YANG C.Fundamentals of aeroelastic design[M].Beijing:Beijing University of Aeronautics & Astronautics Press, 2004(in Chinese).
[6] 周伟江, 洪金森, 汪翼云.跨声速钝体绕流数值模拟研究[J].空气动力学学报, 1999, 17(2):189-194. ZHOU W J, HONG J S, WANG Y Y.Study of the numerical simulation for transonic flow around a blunt body[J].Acta Aerodynamica Sinica, 1999, 17(2):189-194(in Chinese).
[7] 李锋, 杨武兵, 王强,等.高超声速气动试验模拟现状与面临的新挑战[J].气体物理, 2016, 1(2):1-9. LI F, YANG W B, WANG Q, et al.Statusofgroundtestfor hypersonic aerodynamicsandits newchallenge[J].Physics of Gases, 2016,1(2):1-9(in Chinese).
[8] FRENCH M.An application of structural optimization in wind tunnel model design[C]//31st Structures, Structural Dynamics and Materials Conference.Reston:AIAA, 1990:956.
[9] FRENCH M, EASTEP F E.Aeroelastic model design using parameter identification[J].Journal of Aircraft, 1996, 33(1):198-202.
[10] CARLSSON M, KUTTENKEULER J.Design and testing of a blended wing body aeroelastic wind-tunnel model[J].Journal of Aircraft, 2003, 40(1):211-213.
[11] 钱卫, 张桂江, 刘钟坤.大展弦比机翼低速静气动弹性模型的设计、制作和风洞试验[J].实验流体力学, 2013, 27(3):93-97. QIAN W, ZHANG G J, LIU Z K.Design, manufacture and low speed wind tunnel test of a high aspect ratio wing static aeroelasticmodel[J].Journalof Experiments in Fluid Mechanics, 2013, 27(3):93-97(in Chinese).
[12] 寇西平.大展弦比机翼高速静气动弹性模型设计研究[D].绵阳:中国空气动力研究与发展中心, 2013. KOU X P.Research on high speed static aeroelastic model design of high-aspect-ratio wing[D].Mianyang:Aerodynamic Research and Development Center, 2013(in Chinese).
[13] 刘南, 易家宁, 王冬, 等.平尾模型连续变速压颤振试验方法及数值计算研究[J].振动与冲击, 2021, 40(15):11-17. LIU N, YI J N, WANG D, et al.Continuous varyingdynamic pressure wind tunnel test method and numerical calculation of flutter characteristics of horizontal tail model[J].Journal of Vibration and Shock, 2021, 40(15):11-17(in Chinese).
[14] 季辰, 刘子强, 李锋.钝前缘梯形翼高超声速风洞颤振试验[J].气体物理, 2018, 3(1):54-63. JI C, LIU Z Q, LI F.Hypersonic wind tunnel flutter test forablunt-leading-edge delta wing[J].Physics of Gases, 2018, 3(1):54-63(in Chinese).
[15] 杨贤文, 余立, 吕彬彬, 等.静气动弹性模型高速风洞试验研究[J].空气动力学学报, 2015, 33(5):667-672. YANG X W, YU L, LYU B B, et al.Experimentonstaticaeroelasticinhighspeedwindtunnel[J].Acta Aerodynamica Sinica, 2015, 33(5):667-672(in Chinese).
[16] 路波, 吕彬彬, 罗建国, 等.跨声速风洞全模颤振试验技术[J].航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al.Wind tunnel technique for transonic full-model flutter test[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[17] MOULIN B, KARPEL M.Gust loads alleviation using special control surfaces[J].Journal of Aircraft, 2007, 44(1):17-25.
[18] 孙亚军, 梁技, 杨飞, 等.超临界机翼跨音速颤振风洞试验研究[J].振动与冲击, 2014, 33(4):190-194. SUN Y J, LIANG J, YANG F, et al.Transonic flutter wind tunnel tests for an aircraft with a supercritical wing[J].Journal of Vibration and Shock, 2014, 33(4):190-194(in Chinese).
[19] 梁技, 杨飞, 杨智春.气动扰流对飞机T型尾翼跨音速颤振影响的试验研究[J].振动与冲击, 2013, 32(1):94-98. LIANG J, YANG F, YANG Z C.Influence of flow disturb on transonic flutter characteristic of an aircraft T-Tail[J].Journal of Vibration and Shock, 2013, 32(1):94-98(in Chinese).
[20] 钱卫, 杨国伟, 张桂江, 等.某全机跨声速颤振模型颤振特性仿真与试验验证[J].空气动力学学报, 2014, 32(3):364-368. QIAN W, YANG G W, ZHANG G J, et al.Flutter characteristic simulation and experimental verification for transonic flutter model of a whole aircraft[J].Acta Aerodynamica Sinica, 2014, 32(3):364-368(in Chinese).
[21] 左承林, 马军, 岳廷瑞, 等.基于双目立体视觉的直升机旋翼桨叶位移变形测量方法[J].实验流体力学, 2020, 34(1):87-95. ZUO C L, MA J, YUE T R, et al.Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J].Journal of Experiments in Fluid Mechanics, 2020, 34(1):87-95(in Chinese).
[22] 杨希明, 刘南, 郭承鹏, 等.飞行器气动弹性风洞试验技术综述[J].空气动力学学报, 2018, 36(6):995-1008. YANG X M, LIU N, GUO C P, et al.A survey of aeroelastic wind tunnel test techonlogyofflightvehicles[J].Acta Aerodynamica Sinica, 2018, 36(6):995-1008(in Chinese).
[23] SIMIU E, SCANLAN R H.Wind effects on structures:An introduction to wind engineering[M].Hoboken:Wiley, 1978.
[24] VICKERY B J, BASU R I.Across-wind vibrations of structures of circular cross-section.Part I.Development of a mathematical model for two-dimensional conditions[J].Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12(1):49-73.
[25] LARSEN A.A generalized model for assessment of vortex-induced vibrations of flexible structures[J].Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2-3):281-294.
[26] 易江, 孙平宽, 李建中.斜拉桥横向减震振动台试验[J].振动与冲击, 2018, 37(3):47-53. YI J, SUN P K, LI J Z.Shaking table testsfortransverseaseismic control of cable-stayed bridges[J].Journal of Vibration and Shock, 2018, 37(3):47-53(in Chinese).
[27] 王卫华, 李明水, 陈忻.斜拉索的阻力系数研究[J].空气动力学学报, 2005,23(3):389-393. WANG W H, LI M S, CHEN X.Investigation on drag coefficients of stay cables[J].Acta Aerodynamica Sinica, 2005, 23(3):389-393(in Chinese).
[28] 刘慕广, 谢壮宁, 石碧青.高层建筑顶部横梁的风效应[J].振动与冲击, 2016, 35(5):103-107, 152. LIU M G, XIE Z N, SHI B Q.Wind effects of a horizontal beam at top of high-rise buildings[J].Journal of Vibration and Shock, 2016, 35(5):103-107, 152(in Chinese).
[29] CAIGNY J D, PINTELON R, CAMINO J, et al.Interpolated modeling of LPV systems based on observability and controllability[J].IFAC Proceedings Volumes, 2012, 45:1773-1778.
[30] CHEN P.Damping perturbation method for flutter solution:The g-method[J].AIAA Journal, 2000, 38:1519-1524.
Outlines

/