Point cloud registration of space non-cooperative targets based on geodesic distance

  • Bin CHEN ,
  • Houyin XI ,
  • Xiaodong ZHANG ,
  • Min LUO ,
  • Zhidong GUO
Expand
  • 1.College of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China
    2.Beijing Institute of Spacecraft System Engineering,Beijing 100094,China

Received date: 2021-09-07

  Revised date: 2021-10-25

  Accepted date: 2021-11-12

  Online published: 2021-11-23

Supported by

National Natural Science Foundation of China(62073033)

Abstract

To realize identification of the dynamic characteristics of the space targets with local structural similarity and tumbling occlusion, a novel point cloud registration method is proposed for the space non-cooperative target by using the density index and global geodesic distance. First, the spherical projection method is introduced to map the irregular point cloud of the space target to the regular spherical manifold. Then, a density evaluation index based on the dispersion degree of point cloud is designed to divide the spherical point cloud into local subsets. On this basis, a global geodesic distance matrix is constructed to enhance the perception of the information of the local shape of the point cloud. Finally, according to the global geodesic distance matrix, a registration matrix between the scene point cloud and the model point cloud is established to realize the dynamic characteristic identification of the space non-cooperative target. Simulation and experimental results show that with similar target local structures and missing point clouds, the proposed algorithm has better registration accuracy compared to Iterative Closet Point(ICP) algorithms and improved ICP algorithms based on convex hull coarse registration.

Cite this article

Bin CHEN , Houyin XI , Xiaodong ZHANG , Min LUO , Zhidong GUO . Point cloud registration of space non-cooperative targets based on geodesic distance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 326336 -326336 . DOI: 10.7527/S1000-6893.2021.26336

References

1 CHENG L, CHEN S, LIU X Q, et al. Registration of laser scanning point clouds: A review[J]. Sensors201818(5): 1641.
2 LI Y P, WANG Y P, XIE Y C. Using consecutive point clouds for pose and motion estimation of tumbling non-cooperative target[J]. Advances in Space Research201963(5): 1576-1587.
3 陈路, 黄攀峰, 蔡佳. 基于改进HOG特征的空间非合作目标检测[J]. 航空学报201637(2): 717-726.
  CHEN L, HUANG P F, CAI J. Space non-cooperative target detection based on improved features of histogram of oriented gradient[J]. Acta Aeronautica et Astronautica Sinica201637(2): 717-726 (in Chinese).
4 温卓漫, 王延杰, 邸男, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报201536(4): 1330-1338.
  WEN Z M, WANG Y J, DI N, et al. Fast recognition of cooperative target used for position and orientation measurement of space station’s robot arm[J]. Acta Aeronautica et Astronautica Sinica201536(4): 1330-1338 (in Chinese).
5 MARANI R, RENO, VITO, et al. A modified iterative closest point algorithm for 3D point cloud registration[J]. Computer-Aided Civil and Infrastructure Engineering201631(7): 515-534.
6 BESL P J, MCKAY N D. Method for registration of 3-d shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence199214 (2): 239-256.
7 CHEN Y, MEDIONI G. Object modelling by registration of multiple range images[J]. Image and Vision Computing199210(3): 145-155.
8 ZHANG H B, XIE F. A Method for registering range images based on matching triangle meshes[C]∥International Conference on Signal Processing. Piscataway: IEEE Press, 2005.
9 SUOMINEN O, GOTCHEV A. Circular trajectory correspondences for iterative closest point registration[C]∥2013 3DTV Vision Beyond Depth (3DTV-CON). Piscataway: IEEE Press, 2013.
10 SHARP G C, LEE S W, WEHE D K. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence200224(1): 90-102.
11 AHMED M T, MOHAMAD M, MARSHALL J A, et al. Registration of noisy point clouds using virtual interest points[C]∥2015 12th Conference on Computer and Robot Vision. Piscataway: IEEE Press, 2015.
12 郑晓璐, 潘广贞, 杨剑, 等. 基于Hausdorff距离改进的ICP算法[J]. 计算机工程与设计201536(9): 2481-2484, 2489.
  ZHENG X L, PAN G Z, YANG J, et al. Improved ICP algorithm based on Hausdorff distance[J]. Computer Engineering and Design201536(9): 2481-2484, 2489 (in Chinese).
13 石磊, 严利民. 基于法向量和高斯曲率的点云配准算法[J]. 微电子学与计算机202037(9): 68-72.
  SHI L, YAN L M. Point cloud registration algorithm based on normal vector and Gaussian curvature[J]. Microelectronics & Computer202037(9): 68-72 (in Chinese).
14 DAROM T, KELLER Y. Scale-invariant features for 3-D mesh models[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society201221(5): 2758-2769.
15 申浩, 李书晓, 申意萍, 等. 航拍视频帧间快速配准算法[J]. 航空学报201334(6): 1405-1413.
  SHEN H, LI S X, SHEN Y P, et al. Fast interframe registration method in aerial videos[J]. Acta Aeronautica et Astronautica Sinica201334(6): 1405-1413 (in Chinese).
16 ZHAO G P, XU S X, BO Y M. LiDAR-based non-cooperative tumbling spacecraft pose tracking by fusing depth maps and point clouds[J]. Sensors (Basel, Switzerland)201818(10): 3432.
17 HATTAB A, TAUBIN G. 3D rigid registration of cad point-clouds[C]∥2018 International Conference on Computing Sciences and Engineering (ICCSE). Piscataway: IEEE Press, 2018.
18 KLEPPE A L, TINGELSTAD L, EGELAND O. Coarse alignment for model fitting of point clouds using a curvature-based descriptor[J]. IEEE Transactions on Automation Science and Engineering201916(2): 811-824.
19 ATTIA M, SLAMA Y, PEYRODIE L, et al. 3D point cloud coarse registration based on convex hull refined by ICP and NDT[C]∥25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Piscataway: IEEE Press, 2018
20 WU B C, WAN A, YUE X Y, et al. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]∥2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press,2018.
21 YARU X, JUN X, YING W. A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[J]. Frontiers of Computer Science2019(1): 170-182.
22 张帆, 高云龙, 黄先锋, 等. 基于球面投影的单站地面激光点云直线段提取方法[J]. 测绘学报201544(6): 655-662.
  ZHANG F, GAO Y L, HUANG X F, et al. Spherical projection based straight line segment extraction for single station terrestrial laser point cloud[J]. Acta Geodaetica et Cartographica Sinica201544(6): 655-662 (in Chinese).
23 RAO Y M, LU J W, ZHOU J. Spherical fractal convolutional neural networks for point cloud recognition[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019.
24 KAIRANBAY M, JANI H MAT. A review and evaluations of shortest path algorithms[J]. International Journal of Scientific & Technology Research20132(6): 99-104.
25 LaValle S M, Leidner D. Geometric representations and transformations. in planning algorithms[M]. Cambridge: Cambridge University Press, 2006: 81-126.
Outlines

/