Reviews

Research progress in modification and optimization of polyimide for space electricity transmission

  • WANG Jian ,
  • XIAO Ruofan ,
  • LIU Renying ,
  • PING An ,
  • LIU Jikui ,
  • LI Qingmin
Expand
  • 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;
    2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;
    3. Beijing Institute of Control Engineering, Beijing 100089, China

Received date: 2021-07-13

  Revised date: 2021-08-04

  Online published: 2021-11-23

Supported by

National Natural Science Foundation of China (51929701)

Abstract

Polyimide has excellent resistance to high temperature gradients, high insulation and radiation resistance, and is widely used in spacecraft electrical transmission devices and equipment. At present, aerospace high-power electrical transmission scenarios such as space stations and space power stations put forward higher reliability requirements for polyimide materials. Therefore, it is urgent to reveal the damage effect of aerospace extreme environments on polyimide materials, so as to improve its overall performance. This article first introduces and reviews the application of polyimide in spacecraft electrical transmission equipment. Then summarizes the different damage characteristics and failure mechanisms of polyimide in charge and discharge effects, corona discharge effects, atomic oxygen erosion effects and extreme temperature environments. Existing modification control methods and gradient design and preparation methods are analyzed. Limitations in current research on modification control and gradient insulation optimization of polyimide materials for high-voltage and high-power electrical transmission of existing spacecraft are also discussed, and the possible effective solutions are given.

Cite this article

WANG Jian , XIAO Ruofan , LIU Renying , PING An , LIU Jikui , LI Qingmin . Research progress in modification and optimization of polyimide for space electricity transmission[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(12) : 26102 -026102 . DOI: 10.7527/S1000-6893.2021.26102

References

[1] 刘志全, 杨淑利, 濮海玲. 空间太阳电池阵的发展现状及趋势[J]. 航天器工程, 2012, 21(6):112-118. LIU Z Q, YANG S L, PU H L. Development and trend of space solar array technology[J]. Spacecraft Engineering, 2012, 21(6):112-118(in Chinese).
[2] 朱美光, 曹娜娜, 许永毅. 柔性聚酰亚胺衬底非晶硅薄膜太阳电池空间可靠性研究[J]. 材料导报, 2016, 30(S2):219-221. ZHU M G, CAO N N, XU Y Y. Study on reliability of flexible amorphous silicon solar cell for stratospheric application[J]. Materials Review, 2016, 30(S2):219-221(in Chinese).
[3] 李睿, 刘继奎, 徐跃民, 等. 太阳帆板驱动机构的表面充放电效应研究[J]. 空间科学学报, 2014, 34(3):360-366. LI R, LIU J K, XU Y M, et al. Study of surface charging and discharging effects on solar array drive assembly[J]. Chinese Journal of Space Science, 2014, 34(3):360-366(in Chinese).
[4] 吴正婕. 太阳帆板驱动机构内导电环磨屑颗粒运动迁移特性分析[D]. 北京:北京交通大学, 2020. WU Z J. Analysis of movement and migration characteristics of abrasive particles in slip-ring in solar array drive assembly[D]. Beijing:Beijing Jiaotong University, 2020(in Chinese).
[5] 周正平, 江华东, 赵宏春, 等. 一种耐辐照及水解的轻质航空电缆[J]. 电线电缆, 2019(6):15-17. ZHOU Z P, JIANG H D, ZHAO H C, et al. A light aeronautical cable resistant to irradiation and hydrolysis[J]. Wire & Cable, 2019(6):15-17(in Chinese).
[6] 沈自才, 刘宇明, 田东波, 等. 航天材料空间环境效应地面模拟试验标准体系[J]. 航空学报, 2018, 39(S1):722190. SHEN Z C, LIU Y M, TIAN D B, et al. Standard system for ground simulation test of space environmental effect on space materials[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1):722190(in Chinese).
[7] WANG Q, XU Y M, BI S Y, et al. Enhanced electromagnetic-interference shielding effectiveness and mechanical strength of Co-Ni coated aramid-carbon blended fabric[J]. Chinese Journal of Aeronautics, 2021, 34(10):103-114.
[8] JI X Y, LI Y Z, LIU G Q, et al. A brief review of ground and flight failures of Chinese spacecraft[J]. Progress in Aerospace Sciences, 2019, 107:19-29.
[9] 刘继奎, 张可墨, 柳青, 等. 航天器大功率传输介质深层充放电试验研究[J]. 高电压技术, 2018, 44(3):864-869. LIU J K, ZHANG K M, LIU Q, et al. Internal charging and discharging tests of large power transfer dielectric on spacecraft[J]. High Voltage Engineering, 2018, 44(3):864-869(in Chinese).
[10] SMIRNOVA O U, YAROSH A A, SAKHAROV A M. Synthesis and properties of polyamides from 2, 5-furandicarboxylic acid and aromatic and aliphatic diamines[J]. Russian Chemical Bulletin, 2020, 69(2):378-381.
[11] 夏旭. 零维二维纳米材料协同改性聚酰亚胺复合薄膜微结构与电学性能研究[D]. 哈尔滨:哈尔滨理工大学, 2019. XIA X. Reseach on microstructure and electrical properties of polyimide composites modified by zero and two dimensional nanomaterials[D]. Harbin:Harbin University of Science and Technology, 2019(in Chinese).
[12] 李昊耕, 谷红宇, 章俞之, 等. 聚合物材料表面原子氧防护技术的研究进展[J]. 无机材料学报, 2019, 34(7):685-693. LI H G, GU H Y, ZHANG Y Z, et al. Surface protection of polymer materials from atomic oxygen:A review[J]. Journal of Inorganic Materials, 2019, 34(7):685-693(in Chinese).
[13] 蒙志成, 孙永卫, 原青云, 等. 温度对电子辐照下聚酰亚胺表面充电的影响[J]. 量子电子学报, 2018, 35(1):79-85. MENG Z C, SUN Y W, YUAN Q Y, et al. Effect of temperature on surface charging of polyimide under electron irradiation[J]. Chinese Journal of Quantum Electronics, 2018, 35(1):79-85(in Chinese).
[14] WANG P, ZOU B, DING S L, et al. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK[J]. Chinese Journal of Aeronautics, 2021, 34(9):236-246.
[15] 崔万照, 李韵, 张洪太. 航天器微波部件微放电分析及其应用[M]. 北京:北京理工大学出版社, 2019. CUI W Z, LI Y, ZHANG H T. Simulation method of multipactor and its application in satellite microwave components[M]. Beijing:Beijing Insititute of Technology Press, 2019(in Chinese).
[16] 孙建军, 张振龙, 梁伟, 等. 卫星电缆网内部充电效应仿真分析[J]. 航天器环境工程, 2014, 31(2):173-177. SUN J J, ZHANG Z L, LIANG W, et al. Simulation of internal charging for electric cables used in the satellite[J]. Spacecraft Environment Engineering, 2014, 31(2):173-177(in Chinese).
[17] 原青云, 孙永卫, 张希军, 等. 低气压环境下聚酰亚胺材料沿面闪络特性[J]. 航空学报, 2022, 43(7):408-416. YUAN Q Y, SUN Y W, ZHANG X J, et al. Surface flashover characteristics of Kapton in low pressure environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7):408-416(in Chinese).
[18] 刘尚合, 胡小锋, 原青云, 等. 航天器充放电效应与防护研究进展[J]. 高电压技术, 2019, 45(7):2108-2118. LIU S H, HU X F, YUAN Q Y, et al. Research progress in charging-discharging effects and protection of spacecraft[J]. High Voltage Engineering, 2019, 45(7):2108-2118(in Chinese).
[19] 原青云, 王松. 一种新的航天器外露介质充电模型[J]. 物理学报, 2018, 67(19):208-217. YUAN Q Y, WANG S. A new charging model for exposed dielectric of spacecraft[J]. Acta Physica Sinica, 2018, 67(19):208-217(in Chinese).
[20] 郑汉生. 典型结构的深层充放电规律及放电干扰影响研究[D]. 北京:中国科学院,国家空间科学中心, 2017. ZHENG H S. Research on internal charging & discharging of typical structures and discharging interference[D]. Beijing:National Space Science Center, Chinese Academy of Sciences, 2017(in Chinese).
[21] 安恒, 薛玉雄, 杨生胜, 等. 星用介质材料深层充电效应仿真分析[J]. 核技术, 2016, 39(12):49-54. AN H, XUE Y X, YANG S S, et al. Analysis and simulation of dielectric deep charging effect for satellites[J]. Nuclear Techniques, 2016, 39(12):49-54(in Chinese).
[22] 岳龙. 聚酰亚胺带电粒子辐致电导率与介电性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. YUE L. Investigation on charge particle radiation-induced conductivity and dielectric properties of polyimide[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[23] KAUR S, AYRI V, KUMAR A, et al. Experimental production cross sections for synchrotron radiation induced L-series X-rays of Sn and Sb at energies across their Li (i=1-3) absorption edges[J]. X-Ray Spectrometry, 2022, 51(1):15-25.
[24] TYUTNEV A, SAENKO V, ZHADOV A, et al. Radiation-induced conductivity in Kapton-like polymers featuring conductivity rising with an accumulating dose[J]. IEEE Transactions on Plasma Science, 2019, 47(8):3739-3745.
[25] ABDEL-AZIZ Y A, ABD EL-HAMEED A M, ISMAIL M I, et al. Effects of space plasma on an oxide coating of spacecraft's surface materials[J]. Advances in Space Research, 2021, 68(3):1601-1612.
[26] 谢喜宁, 胡小锋, 原青云. 静电电磁脉冲辐射场诱发针-球电极结构放电试验[J]. 航空学报, 2019, 40(11):323161. XIE X N, HU X F, YUAN Q Y. Electrostatic electromagnetic pulse radiation field induced needle-sphere electrode structural discharge test[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323161(in Chinese).
[27] 原青云, 苏泉圣, 蒙志成, 等. 电子辐照下聚酰亚胺材料表面充电特性研究[J]. 装备环境工程, 2017, 14(4):1-4. YUAN Q Y, SU Q S, MENG Z C, et al. Surface charging characteristics of Kapton under the electron irradiation[J]. Equipment Environmental Engineering, 2017, 14(4):1-4(in Chinese).
[28] 黄旭炜, 刘涛, 舒想, 等. 直流电晕放电作用下Kapton型聚酰亚胺裂解机理的ReaxFF分子动力学仿真[J]. 高电压技术, 2020, 46(1):215-223. HUANG X W, LIU T, SHU X, et al. ReaxFF-based molecular dynamics simulation on decomposition of Kapton polyimide under stress of DC corona discharge[J]. High Voltage Engineering, 2020, 46(1):215-223(in Chinese).
[29] 张明玉, 姜秀刚, 刘立柱, 等. 聚酰亚胺薄膜在电晕放电下击穿特点分析[J]. 绝缘材料, 2017, 50(3):66-69, 74. ZHANG M Y, JIANG X G, LIU L Z, et al. Study on breakdown characteristic of polyimide film under corona discharge[J]. Insulating Materials, 2017, 50(3):66-69, 74(in Chinese).
[30] 徐跃, 邓小军. 不同频率和温度的电晕放电对聚酰亚胺薄膜的损伤特性研究[J]. 绝缘材料, 2014, 47(1):85-88. XU Y, DENG X J. Study on the effect of corona discharge on the damage mechanism of polyimide film under different frequency and temperature[J]. Insulating Materials, 2014, 47(1):85-88(in Chinese).
[31] 查俊伟. 耐电晕聚酰亚胺/无机纳米复合薄膜的制备与电性能研究[D]. 北京:北京化工大学, 2010. ZHA J W. Fabrication and electrical properties of polyimide nanocomposite films with good corona resistance[D]. Beijing:Beijing University of Chemical Technology, 2010(in Chinese).
[32] 雷清泉, 石林爽, 田付强, 等. 电晕老化前后100HN和100CR聚酰亚胺薄膜的电导电流特性实验研究[J]. 中国电机工程学报, 2010, 30(13):109-114. LEI Q Q, SHI L S, TIAN F Q, et al. Experimental research on conduction current characteristics of 100HN and 100CR polyimide film before and after corona aging[J]. Proceedings of the CSEE, 2010, 30(13):109-114(in Chinese).
[33] 赵小虎, 沈志刚, 邢玉山, 等. 地面模拟设备中原子氧通量测量方法的比较研究[J]. 航空学报, 2008, 29(2):478-486. ZHAO X H, SHEN Z G, XING Y S, et al. Comparative study of measurement methods of atomic oxygen flux in ground-based simulation facility[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):478-486(in Chinese).
[34] DE GROH K K, BANKS B A, MCCARTHY C E, et al. MISSE 2 PEACE polymers atomic oxygen erosion experiment on the international space station[J]. High Performance Polymers, 2008, 20(4-5):388-409.
[35] GONZALEZ R I, PHILLIPS S H, HOFLUND G B. In situ atomic oxygen erosion study of fluoropolymer films using X-ray photoelectron spectroscopy[J]. Journal of Applied Polymer Science, 2004, 92(3):1977-1983.
[36] 多树旺, 李美栓, 张亚明, 等. 原子氧环境中聚酰亚胺的质量变化和侵蚀机制[J]. 材料研究学报, 2005, 19(4):337-342. DUO S W, LI M S, ZHANG Y M, et al. Mass change and erosion mechanism of the polyimide film during atomic oxygen exposure[J]. Chinese Journal of Materials Research, 2005, 19(4):337-342(in Chinese).
[37] HELLIWELL J R. Respect the synchrotron beam strength:How to model it, measure it and mitigate it for various scientific fields[J]. Journal of Synchrotron Radiation, 2021, 28(5):1275-1277.
[38] ZHAO W, LI W P, LIU H C, et al. Erosion of a polyimide material exposed to simulated atomic oxygen environment[J]. Chinese Journal of Aeronautics, 2010, 23(2):268-273.
[39] 刘向鹏, 童靖宇, 李金洪. 航天器薄膜材料在原子氧环境中退化研究[J]. 航天器环境工程, 2006, 23(1):39-41, 59. LIU X P, TONG J Y, LI J H. Study on the degradation of spacecraft film material due to AO interaction[J]. Spacecraft Environment Engineering, 2006, 23(1):39-41, 59(in Chinese).
[40] 刘知辉, 牛军川, 贾睿昊. 热梯度环境下梁高频振动的能量流模型[J]. 航空学报, 2022, 43(5):592-604. LIU Z H, NIU J C, JIA R H. Energy flow model for high-frequency vibration of beams in thermal-gradient environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):592-604(in Chinese).
[41] 杨艳妮. 星载天线在轨热稳定性影响因素分析[D]. 西安:西安电子科技大学, 2007. YANG Y N. The influence factor analysis of thermal stability for the space-borne antenna[D]. Xi'an:Xidian University, 2007(in Chinese).
[42] 张庆. 基于太空辐射的星载天线在轨热性能分析与优化[D]. 西安:西安电子科技大学, 2007. ZHANG Q. Analysis and optimization of on-orbit thermal performance for a satellite antenna under space radiation[D]. Xi'an:Xidian University, 2007(in Chinese).
[43] 蒋卓良. 太阳能帆板传热与振动研究[D]. 成都:西南交通大学, 2010. JIANG Z L. A study of heat transfer and vibration in solar array[D]. Chengdu:Southwest Jiaotong University, 2010(in Chinese).
[44] 罗峰. AMS散热板的太空模拟实验[D]. 济南:山东大学, 2011. LUO F. The space environment simulation test of the radiators of AMS[D]. Jinan:Shandong University, 2011(in Chinese).
[45] 刘知辉, 牛军川, 贾睿昊. 热梯度环境下梁高频振动的能量流模型[J]. 航空学报, 2022, 43(5):592-604. LIU Z H, NIU J C, JIA R H. Energy flow model for high-frequency vibration of beams in thermal-gradient environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):592-604(in Chinese).
[46] 张军徽, 佟安, 武娜, 等. 太阳帆航天器在绕地轨道中的热诱发振动[J]. 航空学报, 2019, 40(11):223135. ZHANG J H, TONG A, WU N, et al. Thermally-induced vibration of a solar sail in earth orbit[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):223135(in Chinese).
[47] 莫雅俊, 张灵, 周远翔, 等. 基于理化分析的热老化聚酰亚胺薄膜的电导特性[J]. 高电压技术, 2019, 45(4):1241-1248. MO Y J, ZHANG L, ZHOU Y X, et al. Conduction current characteristics of thermally aged polyimide films based on physico-chemical analysis[J]. High Voltage Engineering, 2019, 45(4):1241-1248(in Chinese).
[48] 马涛, 刘宇艳, 刘少柱, 等. 防辐射材料的研究进展[J]. 高分子通报, 2012(9):81-86. MA T, LIU Y Y, LIU S Z, et al. Research progress of radiation-proof material[J]. Polymer Bulletin, 2012(9):81-86(in Chinese).
[49] 李书林. 基于金属功能粒子的辐射防护有机玻璃的制备及其性能研究[D]. 南京:南京航空航天大学, 2014. LI S L. The preparation and shielding effect of radiation protection organic glass based on metal functional particles[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[50] 张桂敏, 郭建梅, 周成飞, 等. 防辐射有机玻璃的研究与进展[J]. 中南民族大学学报(自然科学版), 2004, 23(4):30-32. ZHANG G M, GUO J M, ZHOU C F, et al. Advances in radiation-shielding polymethy methzcrylate[J]. Journal of South-Central College for Nationalities (Natural Sciences), 2004, 23(4):30-32(in Chinese).
[51] YOUSUF ZAI M A K, KAMAL ANSARI M R. Study the effect of ozone layer depletion on aircraft design at atmospheric region of Pakistan[C]//20082nd International Conference on Advances in Space Technologies. Piscataway:IEEE Press, 2008:54-57.
[52] 安骏, 吴海霞, 辛寅昌. 防高能辐射的树脂/纳米铅复合材料的制备及研究[J]. 工程塑料应用, 2004, 32(12):14-17. AN J, WU H X, XIN Y C. Preparation and research of resin/nano-lead composite for high-energy radiation protection[J]. Engineering Plastics Application, 2004, 32(12):14-17(in Chinese).
[53] 李江苏, 戴耀东, 张瑜, 等. 氧化铒/环氧树脂辐射防护材料的制备及性能研究[J]. 化工新型材料, 2010, 38(5):48-52. LI J S, DAI Y D, ZHANG Y, et al. Preparation of Er2O3/epoxy resin composite material for radiation-protection and its property research[J]. New Chemical Materials, 2010, 38(5):48-52(in Chinese).
[54] 安骏, 刘吉华, 辛寅昌. 树脂纳米铈防辐射复合材料的制备及其性能研究[J]. 工程塑料应用, 2006, 34(8):20-23. AN J, LIU J H, XIN Y C. Preparation of resin nano-cerium shielding radiation composite and its properties researching[J]. Engineering Plastics Application, 2006, 34(8):20-23(in Chinese).
[55] 毛翔宇, 陈小兵. Bi4Ti3O12取向陶瓷的铁电和介电性能[J]. 硅酸盐学报, 2004, 13(11):30-34. MAO X Y, CHEN X B. Ferroelectric and dielectric properties of Bi4Ti3O12 oriented ceramics[J]. Journal of the Chinese Ceramic Society, 2004, 13(11):30-34(in Chinese).
[56] 刘力, 孙朝晖, 吴友平. 稀土/高分子复合材料的射线屏蔽性能和磁性能[J]. 合成橡胶工业, 2001, 24(3):188-190. LIU L, SUN Z H, WU Y P. Radiation shielding and magnetic properties of rare earth/polymer composites[J]. China Synthetic Rubber Industry, 2001, 24(3):188-190(in Chinese).
[57] ZHONG W H, SUI G, JANA S, et al. Cosmic radiation shielding tests for UHMWPE fiber/nano-epoxy composites[J]. Composites Science and Technology, 2009, 69(13):2093-2097.
[58] JAYARAJ V V, PADMAPRABU C, OJHA B K, et al. Irradiation behaviour of ferroboron-An alternate in-core shielding material for sodium-cooled fast reactors[J]. Nuclear Engineering and Design, 2021, 377:111126.
[59] DI M W, HE S Y, LI R Q, et al. Resistance to proton radiation of nano-TiO2 modified silicone rubber[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2006, 252(2):212-218.
[60] NAMBIAR S, YEOW J T W. Polymer-composite materials for radiation protection[J]. ACS Applied Materials & Interfaces, 2012, 4(11):5717-5726.
[61] LIU P C, LIU Q Y, MA Z J, et al. Radiation shielding for the first optics enclosure at the high energy photon source beamlines[J]. Radiation Detection Technology and Methods, 2021, 5(2):168-173.
[62] WANG K K, ZHAO L B, HONG H M, et al. Parameter studies and evaluation principles of delamination damage in laminated composites[J]. Chinese Journal of Aeronautics, 2021, 34(7):62-72.
[63] 王跃毅, 鄢定祥, 李忠明. 碳纳米管/聚酰亚胺泡沫的制备及其吸波性能[J]. 航空学报, 2022, 43(7):484-492. WANG Y Y, YAN D X, LI Z M. Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7):484-492(in Chinese).
[64] ZHANG W A, ZENG J, LIU L, et al. A novel property of styrene-butadiene-styrene/clay nanocomposites:Radiation resistance[J]. Journal of Materials Chemistry, 2004, 14(2):209-213.
[65] ZHANG W, FANG Y. Enhancement of radiation-resistant effect in ethylene-vinyl acetate copolymers by the formation of ethylene-vinyl acetate copolymers/clay nanocomposites[J]. Journal of Applied Polymer Science, 2005, 98(6):2532-2538.
[66] TIWARI V K, KULRIYA P K, AVASTHI D K, et al. Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites[J]. ACS Applied Materials & Interfaces, 2009, 1(2):311-318.
[67] 周浩然. PI/Al2O3杂化薄膜Al含量分析方法、电晕老化及热老化寿命研究[D]. 哈尔滨:哈尔滨理工大学, 2011. ZHOU H R. Study on the analysis methods for Al content, corona aging and thermal aging of PI/Al2O3 hybrid films[D]. Harbin:Harbin University of Science and Technology, 2011(in Chinese).
[68] 陈昊, 范勇, 杨瑞宵, 等. 聚酰亚胺薄膜绝缘材料耐电晕机理研究[J]. 电机与控制学报, 2013, 17(5):28-31. CHEN H, FAN Y, YANG R X, et al. Study on the corona-resistance mechanism of the polyimide films[J]. Electric Machines and Control, 2013, 17(5):28-31(in Chinese).
[69] 李庆. 新型聚酰亚胺及其复合材料的制备与性能研究[D]. 武汉:湖北大学, 2018. LI Q. Study on preparation and properties of novel polyimides and their composites[D]. Wuhan:Hubei University, 2018(in Chinese).
[70] 吴旭辉, 吴广宁, 杨雁, 等. 等离子体改性纳米粒子对聚酰亚胺复合薄膜耐电晕性能的影响[J]. 高电压技术, 2017, 43(9):2881-2888. WU X H, WU G N, YANG Y, et al. Effect of nanoparticles plasma treatment on corona resistance of polyimide composite films[J]. High Voltage Engineering, 2017, 43(9):2881-2888(in Chinese).
[71] 张兴涛, 吴广宁, 杨雁, 等. 聚酰亚胺纳米复合薄膜耐电晕机理研究[J]. 绝缘材料, 2016, 49(8):17-20, 25. ZHANG X T, WU G N, YANG Y, et al. Research on corona resistance mechanism of polyimide nano composite films[J]. Insulating Materials, 2016, 49(8):17-20, 25(in Chinese).
[72] 冯宇, 殷景华, 陈明华, 等. 聚酰亚胺/TiO2纳米杂化薄膜耐电晕性能的研究[J]. 中国电机工程学报, 2013, 33(22):142-147, 22. FENG Y, YIN J H, CHEN M H, et al. Study on corona-resistance of the polyimide/nano-TiO2hybrid films[J]. Proceedings of the CSEE, 2013, 33(22):142-147, 22(in Chinese).
[73] ZHAO X, YIN J H, JIN R, et al. Effect of content and layer thickness on the corona-resistance of PI/TiO2 nanocomposite films[J]. Applied Mechanics and Materials, 2013, 395-396:133-137.
[74] ZHA J W, FAN B H, DANG Z M, et al. Microstructure and electrical properties in three-component (Al2O3-TiO2)/polyimide nanocomposite films[J].Journal of Materials Research, 2010, 25(12):2384-2391.
[75] 廖波, 张步峰, 王文进, 等. 纳米氧化硅改性聚酰亚胺薄膜的制备与性能研究[J]. 绝缘材料, 2014, 47(1):37-39. LIAO B, ZHANG B F, WANG W J, et al. Preparation and properties study of polyimide film modified by nano-silica[J]. Insulating Materials, 2014, 47(1):37-39(in Chinese).
[76] YAO L, CHEN L, CHEN Y Q, et al. Effect of SiO2 nanoparticles on the thermal properties of dielectric composite films[J]. International Journal of Manufacturing Technology and Management, 2016, 30(6):410.
[77] RUI J M. Preparation of novel corona-resistance polyimide/spherical SiO2 hybrid films[J]. Advanced Materials Research, 2013, 716:172-176.
[78] 查俊伟, 党智敏. 聚酰亚胺/纳米ZnO耐电晕杂化膜的绝缘特性[J]. 中国电机工程学报, 2009(34):122-127. ZHA J W, DANG Z M. Insulation properties of polyimide/nano-ZnO hybrid films with good corona resistance[J]. Proceedings of the CSEE, 2009(34):122-127(in Chinese).
[79] 范勇, 陈东, 王欢, 等. PI/Mg(OH)2纳米复合薄膜的介电性能[J]. 哈尔滨理工大学学报, 2014(2):111-114. FAN Y, CHEN D, WANG H, et al. Dielectric properties of PI/Mg(OH)2 hybrid film[J]. Journal of Harbin University of Science and Technology, 2014(2):111-114(in Chinese).
[80] LU Y F, SHAO Q, YUE H H, et al. A review of the space environment effects on spacecraft in different orbits[J]. IEEE Access, 7:93473-93488.
[81] WEI J H, GANG Z X, MING L Q, et al. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis[4-(3-aminophenoxy)phenyl] phenylphosphine oxide[J]. Polymer Science Series B, 2014, 56(6):788-798.
[82] LV M, WANG Q H, WANG T M, et al. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications[J]. Composites Part B:Engineering, 2015, 77:215-222.
[83] 袁群博. 聚酰亚胺抗原子氧改性及耐划擦防护层的设计与模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2020. YUAN Q B. Anti-atomic oxygen modification of polyimide and design & simulation of scratch-resistant protective layer[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese).
[84] FANG G Q, LI H, LIU J G, et al. Intrinsically atomic-oxygen-resistant POSS-containing polyimide aerogels:Synthesis and characterization[J]. Chemistry Letters, 2015, 44(8):1083-1085.
[85] LEI X F, QIAO M T, TIAN L D, et al. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment[J]. Corrosion Science, 2015, 98:560-572.
[86] LEI X F, CHEN Y, ZHANG H P, et al. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10207-10220.
[87] 蒙志成, 孙永卫, 原青云, 等. 温度对聚酰亚胺表面充电特性影响的实验与数值模拟[J]. 高电压技术, 2018, 44(9):2988-2993. MENG Z C, SUN Y W, YUAN Q Y, et al. Experimental and numerical simulation for the effect of temperature on the surface charge of polyimide[J]. High Voltage Engineering, 2018, 44(9):2988-2993(in Chinese).
[88] HU J S, ZHANG K F, CHENG H, et al. Modeling on mechanical behavior and damage evolution of single-lap bolted composite interference-fit joints under thermal effects[J]. Chinese Journal of Aeronautics, 2021, 34(8):230-244.
[89] 罗楚养, 江晟达, 陈梦熊, 等. 基于高温树脂传递模塑工艺的碳纤维/聚酰亚胺复合材料连接环制备与验证[J]. 航空学报, 2021, 42(7):625438. LUO C Y, JIANG S D, CHEN M X, et al. Preparation and evaluation of carbon fiber/polyimide composite attaching collars based on high temperature resin transfer mould process[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):625438(in Chinese).
[90] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12):023716. HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials:Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):023716(in Chinese).
[91] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10):422900. YU Y Y, ZHANG Y, GAO L M, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):422900(in Chinese).
[92] JIANG Q, WU L W. Property enhancement of aligned carbon nanotube/polyimide composite by strategic prestraining[J]. Journal of Reinforced Plastics and Composites, 2016, 35(4):287-294.
[93] UCHIDA S, MURAKAMI T, IWAMURA T, et al. Enhanced thermal conductivity in immiscible polyimide blend composites with needle-shaped ZnO particles[J]. RSC Advances, 2017, 7(25):15492-15499.
[94] LI S W, FENG Y Y, LI Y L, et al. Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties[J]. Carbon, 2016, 109:131-140.
[95] GONG J R, LIU Z D, YU J H, et al. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity[J]. Composites Part A:Applied Science and Manufacturing, 2016, 87:290-296.
[96] YOONESSI, MITRA, SAHIMI, et al. Fabrication of graphene-polyimide nanocomposites with superior electrical conductivity[J].ACS Applied Materials and Interfaces, 2017, 9:43230-43238.
[97] 阴晓楠. 聚酰亚胺/氧化铝/氮化硼纳米复合薄膜的制备与性能研究[D]. 北京:北京化工大学, 2020. YIN X N. Preparation and study on polyimide/alumina/boron nitride nanocomposite films[D]. Beijing:Beijing University of Chemical Technology, 2020(in Chinese).
[98] 黄旭炜. 低介损耐放电聚酰亚胺设计合成与高频绝缘性能调控机制[D]. 北京:华北电力大学, 2020. HUANG X W. Synthesis of low dielectric-loss and discharge-resistant polyimide and the regulation mechanism of high frequency insulation properties[D]. Beijing:North China Electric Power University, 2020(in Chinese).
[99] KATO K, KURIMOTO M, SHUMIYA H, et al. Application of functionally graded material for solid insulator in gaseous insulation system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2):362-372.
[100] OKUBO H, SHUMIYA H, ITO M, et al. Optimization techniques on permittivity distribution in permittivity graded solid insulators[C]//Conference Record of the 2006 IEEE International Symposium on Electrical Insulation. Piscataway:IEEE Press, 2006:519-522.
[101] KURIMOTO M, KATO K, HANAI M, et al. Application of functionally graded material for reducing electric field on electrode and spacer interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1):256-263.
[102] 张冠军, 李文栋, 刘哲, 等. 介电功能梯度材料在电气绝缘领域的研究进展[J]. 中国电机工程学报, 2017, 37(14):4232-4245, 4303. ZHANG G J, LI W D, LIU Z, et al. Research progress on dielectric functionally graded materials for electrical insulation[J]. Proceedings of the CSEE, 2017, 37(14):4232-4245, 4303(in Chinese).
[103] 王黑龙. 航天器外用硅橡胶及树脂基复合材料原子氧效应研究[D]. 大连:大连海事大学, 2019. WANG H L. Study on the atomic oxygen effect of silicone rubber and resin matrix composites for spacecraft[D]. Dalian:Dalian Maritime University, 2019(in Chinese).
[104] 王洪祚, 王颖. 离心法制备环氧树脂/碳纤维梯度功能材料:结构与耐磨性[J]. 粘接, 2009, 30(1):86-88. WANG H Z, WANG Y. Structure wear of centrifuged epoxy-resin/carbon fiber functionally graded materials[J]. Adhesion in China, 2009, 30(1):86-88(in Chinese).
[105] WATANABE S, HAYASHI N, TAKEUCHI H, et al. Electrical applications of titanium-based FGMs manufactured by progressive lamination[C]//ICSD'98. Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics. Piscataway:IEEE Press, 1998:539-542.
[106] LI S T, ZHANG T, SUN J, et al. Improvement of surface flashover performance in vacuum by co-firing Mo/Al2O3 cermets and Al2O3 ceramics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6):1931-1937.
[107] 陈晨. 氮化硼/聚酰亚胺薄膜的制备与性能研究[D]. 南京:东南大学, 2018. CHEN C. Preparation and properties of boron nitride/polyimide films[D]. Nanjing:Southeast University, 2018(in Chinese).
[108] 李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6):129-135. LI D C, HE J K, TIAN X Y, et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6):129-135(in Chinese).
[109] 陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):524787. CHEN X M, YAO L J, GUO L C, et al. 3D printed continuous fiber-reinforced composites:State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524787(in Chinese).
[110] GUO Y D, YANG H N, LIN G P, et al. Thermal performance of a 3D printed lattice-structure heat sink packaging phase change material[J]. Chinese Journal of Aeronautics, 2021, 34(5):373-385.
[111] KURIMOTO M, OZAKI H, YAMASHITA Y, et al. Dielectric properties and 3D printing of UV-cured acrylic composite with alumina microfiller[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5):2985-2992.
[112] 杨昆, 张广明, 李晓强, 等. 基于电场驱动熔融喷射聚合物基复合材料高分辨率3D打印[J]. 机械工程学报, 2020, 56(23):193-202. YANG K, ZHANG G M, LI X Q, et al. High-resolution 3D printing of polymer matrix composites based on electric-field-driven fusion jetting[J]. Journal of Mechanical Engineering, 2020, 56(23):193-202(in Chinese).
[113] 王敏, 时云, 杨天豪, 等. 空间在轨3D打印进展及关键问题分析[J]. 航天制造技术, 2021(3):62-65, 72. WANG M, SHI Y, YANG T H, et al. Present situation of the technology development of American in-orbit manufacturing and its enlightenment[J]. Aerospace Manufacturing Technology, 2021(3):62-65, 72(in Chinese).
[114] 刘飞, 王炜, 李金岳, 等. 3D打印技术在空间飞行器研制中的应用研究[J]. 航天制造技术, 2018(6):58-62. LIU F, WANG W, LI J Y, et al. Application research of 3D printing in spacecraft development[J]. Aerospace Manufacturing Technology, 2018(6):58-62(in Chinese).
Outlines

/