In lunar surface sampling by Chang'e 5, it is difficult to use the slender and flexible manipulator to achieve precise operations, such as digging, putting the sample into the pot, pot grasping and assembly, etc. In this paper, a vision system, consisting of static cameras installed on the lander and dynamic cameras mounted on the manipulator, is developed to get images and relative positions of the end-effector relative to the targets, so as to guide precise operations. We propose a novel positioning method by combining two kinds of features observed in multiple cameras, the circular objects and drones, and build a unified framework for calculating the relative poses between the end-effector and the targets in different operations. The influences of the manipulator error on the convergence of visual positioning are analysed, and several applications with combinations of different features and cameras are realized for operations of digging, sample putting, etc. Experimental validation and analysis show that the accuracy of binocular ellipses positioning in digging is better than 2 cm, and the accuracy of positioning with circular objects and drones in sample putting is better than 2 mm. The results meet the requirements of various operations, and the method proposed successfully supported implementation of the Chang'e 5 lunar surface sampling and packaging mission.
LIU Chuankai
,
LI Dongsheng
,
XIE Jianfeng
,
LEI Junxiong
,
YUAN Chunqiang
,
HE Ximing
. Multi-feature fusion based vision locating method for lunar surface sampling teleoperation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(12)
: 326296
-326296
.
DOI: 10.7527/S1000-6893.2021.26296
[1] 邓湘金, 郑燕红, 金晟毅, 等. 嫦娥五号采样封装系统设计与实现[J]. 中国科学:技术科学, 2021, 51(7):753-762. DENG X J, ZHENG Y H, JIN S Y, et al. Design and implementation of sampling, encapsulating, and sealing system of Chang'e-5[J]. Scientia Sinica (Technologica), 2021, 51(7):753-762(in Chinese).
[2] VINOGRADOV A P. Preliminary data on lunar ground brought to Earth by Automatic Probe "Luna 16"[C]//Processing 2nd Lunar Science Conference, 1971:1-16.
[3] NASA. Luna 20 DRAFT[EB/OL]. https://curator.jsc.nasa.gov/lunar/lsc/luna20core.pdf.
[4] NASA. Luna 24 DRAFT[EB/OL]. https://curator.jsc.nasa.gov/lunar/lsc/luna24core.pdf.
[5] BONITZ R G, SHIRAISHI L, ROBINSON M, et al. NASA Mars 2007 phoenix lander robotic arm and icy soil acquisition device[J]. Journal of Geophysical Research, 2008, 113:E00A01.
[6] DAUBAR I, LOGNONNE P, TEANBY N A, et al. Impact-seismic investigations of the InSight mission[J]. Space Science Reviews, 2018, 214(8):1-68.
[7] 王海涛, 付丽璋, 蒋万松. "凤凰号"火星探测器着陆过程[J]. 航天返回与遥感, 2009, 30(3):8-15. WANG H T, FU L Z, JIANG W S. The landing process of Mars phoenix lander[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(3):8-15(in Chinese).
[8] 季江徽, 黄秀敏. "洞察号"启程探索火星内部世界[J]. 科学通报, 2018, 63(26):2678-2685. JI J H, HUANG X M. Insight probe set out to explore the inner world of Mars[J]. Chinese Science Bulletin, 2018, 63(26):2678-2685(in Chinese).
[9] KELLER H U, GOETZ W, HARTWIG H, et al. Phoenix robotic arm camera[J]. Journal of Geophysical Research, 2008, 113:E00A17.
[10] BASS D S, TALLEY K P. Phoenix surface mission operations processes[J]. Journal of Geophysical Research:Planets, 2008, 113(E3):E00A06.
[11] MAKI J N, GOLOMBEK M, DEEN R, et al. The color cameras on the InSight lander[J]. Space Science Reviews, 2018, 214(6):105.
[12] TREBI-OLLENNU A, KIM W, ALI K, et al. InSight Mars lander robotics instrument deployment system[J]. Space Science Reviews, 2018, 214(5):93.
[13] BAILEY P, SORICE C, TREBI-OLLENNU A, et al. Deployed instrument monocular localization on the insight mars lander[C]//2020 IEEE Aerospace Conference. Piscataway:IEEE Press; 2020:1-13.
[14] 马伟苹, 李文新, 孙晋川, 等. 基于粗-精立体匹配的双目视觉目标定位方法[J]. 计算机应用, 2020, 40(1):227-232. MA W P, LI W X, SUN J C, et al. Binocular vision target positioning method based on coarse-fine stereo matching[J]. Journal of Computer Applications, 2020, 40(1):227-232(in Chinese).
[15] 岑誉, 高健, 曾友, 等. 面向PCB圆形基准点的权重式椭圆拟合定位方法[J]. 组合机床与自动化加工技术, 2015(4):19-23, 28. CEN Y, GAO J, ZENG Y, et al. Weighted ellipse fitting location method for PCB circular mark[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(4):19-23, 28(in Chinese).
[16] ABBAS S M, ASLAM S, BERNS K, et al. Analysis and improvements in AprilTag based state estimation[J]. Sensors (Basel, Switzerland), 2019, 19(24):5480.
[17] 焦传佳, 江明. 基于AprilTag图像识别的移动机器人定位研究[J]. 电子测量与仪器学报, 2021, 35(1):110-119. JIAO C J, JIANG M. Research on positioning of mobile robot based on low complexity AprilTag image recognition[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1):110-119(in Chinese).
[18] ABARCA H, DEEN R, HOLLINS G, et al. Image and data processing for InSight lander operations and science[J]. Space Science Reviews, 2019, 215(2):22.
[19] 郑燕红, 邓湘金, 金晟毅, 等. 嫦娥五号表取采样臂载相机成像位姿与覆盖[J]. 航空学报, 2022, 43(8):325388. ZHENG Y H, DENG X J, JIN S Y, et al. Research on imaging posture and coverage of Chang'E 5 surface sampling manipulator cameras[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8):325388(in Chinese).
[20] 刘传凯, 王泰杰, 董卫华, 等. 玉兔2号月球车大间距导航成像的空间分辨率建模分析[J]. 中国科学:技术科学, 2019, 49(11):1275-1285. LIU C K, WANG T J, DONG W H, et al. Modeling and analysis of spatial resolution of images from Yutu 2 lunar rover in large-span movements[J]. Scientia Sinica (Technologica), 2019, 49(11):1275-1285(in Chinese).